

Introduction

We have written this small book for those who only start get-

ting acquainted with the world of PostgreSQL. From this book,

you will learn:

I PostgreSQL —what is it all about? . 3

II What’s new in PostgreSQL 17 . 15

III Installation on Linux and Windows 25

IV Connecting to a server, writing SQL queries,

and using transactions . 35

V Learning the SQL language on a demo database 61

VI Using PostgreSQL with your application 89

VII Minimal server setup .103

VIII About a useful pgAdmin application 111

IX Advanced features:

full-text search, . 117

JSON format, . 124

foreign data wrappers . 137

X Education and certification opportunities 149

XI Keeping up with all updates .177

XII About the Postgres Professional company 181

We hope that our book will make your first experience with

PostgreSQL more pleasant and help you blend into the Post-

greSQL community. Good luck!

I About PostgreSQL

PostgreSQL is the most feature-rich free and open-source

database system. Originally developed in an academic en-

vironment, it has successfully united a large community of

developers over the years. Nowadays, PostgreSQL offers ev-

erything that most customers need, and it is actively used

all over the world to create high-load business-critical sys-

tems.

Some History

Modern PostgreSQL originates from the POSTGRES project,

which was led by Michael Stonebraker, professor of the Uni-

versityof California, Berkeley. Before this work, Michael Stone-

braker managed the development of INGRES, one of the first

relational database systems. POSTGRES emerged as an ef-

fort to rethink previous work and address the limitations of

INGRES’s rigid type system.

The project was started in 1985, and by 1988 a number of

scientific articles had been published that described the data

model, POSTQUEL query language (SQL was not an accepted

standard at the time), and data storage structure.

4

i

POSTGRES is sometimes considered to be a so-called post-

relational database system. The relational model had long

been criticized for its restrictions, which were an inevitable

trade-off for its strictness and simplicity As computer tech-

nologies were spreading in all spheres of life, new types of

applications started to appear, and databases had to support

custom data types and such features as inheritance or creat-

ing and managing complex objects.

The first version of this database system appeared in 1989.

It was being improved and enhanced for several years, but

in 1993, when version 4.2 was released, the project was shut

down. However, despite its official cancellation, UC Berke-

ley alumni Andrew Yu and Jolly Chen revived the project and

resumed its development in 1994, taking advantage of its lib-

eral BSD license and open source. They replaced POSTQUEL

query language with SQL, which had become a generally ac-

cepted standard by that time. The project was renamed to

Postgres95.

In 1996, it became obvious that the Postgres95 name would

not stand the test of time, and a new name was selected:

PostgreSQL. This name reflects the connection both with the

original POSTGRES project and the SQL adoption. This name

may be quite hard to articulate, but nevertheless, we should

pronounce it as “Post-Gres-Q-L” or simply “postgres,” but not

as “postgre.”

The first PostgreSQL release had version 6.0, keeping the

original numbering scheme. The project grew, and its man-

agement was taken over by at first a small group of active

users and developers, which was named PostgreSQL Global

Development Group.

5

i

Development

All the main decisions about developing and releasing new

PostgreSQL versions are taken by the Core team, which con-

sists of seven people at the moment.

Apart from occasional contributors, there is a core group

of developers who make significant contributions to Post-

greSQL. They are called major contributors. There is also

a group of committers, who have the write access to the

source code repository. The group’s membership evolves over

time, with new developers joining the community while oth-

ers move on. The current list of developers is published

on PostgreSQL’s official website: postgresql.org/community/

contributors.

The contribution of Russian developers into PostgreSQL is

compelling. This is arguably the largest global open-source

project with such a vast Russian representation.

Vadim Mikheev, a software programmer from Krasnoyarsk

who used to be a member of the Core team, played an im-

portant role in PostgreSQL evolution and development. He

created such key core features as multi-version concurrency

control (MVCC), vacuum, write-ahead log (WAL), subqueries,

triggers. Vadim is not involved with the project anymore.

In 2015, Oleg Bartunov, a professional astronomer and

research scientist at Sternberg Astronomical Institute of

Lomonosov Moscow State University, teamed up with Teodor

Sigaev and Alexander Korotkov to start the Postgres Profes-

sional company, which is now the main talent foundry in

Russia when it comes to database system development.

The main areas of their contribution are PostgreSQL local-

ization (national encodings and Unicode support), full-text

https://postgresql.org/community/contributors
https://postgresql.org/community/contributors

6

i

search, working with arrays and semi-structured data (hstore,

json, jsonb), new index methods (GiST, SP-GiST, GIN and RUM,

Bloom). They have also created a lot of popular extensions.

The PostgreSQL release cycle usually takes about a year. In

this timeframe, the community receives patches with bug

fixes, updates, and new features from contributors worldwide.

Traditionally, all patches are discussed in the pgsql-hackers

mailing list. If the community finds the idea useful, its im-

plementation is correct, and the code passes a mandatory

code review by other developers, the patch is included into

the next release.

At some point (usually in spring, about half a year before the

release), code stabilization is announced: all new features

get postponed until the next version, only bug fixes and im-

provements for the already included patches are accepted.

Within the release cycle, beta versions appear. Closer to the

end of the release cycle a release candidate is built, and soon

a new major version of PostgreSQL is released.

Major versions used to be defined by two numbers, but in

2017 it was decided to start using a single number. Thus,

version 9.6 was followed by PostgreSQL 10, while the latest

available version is PostgreSQL 17, which was released in

September 2024.

As the new version is being prepared, developers can find and

fix bugs in it. The most critical fixes are backported to the

previous versions. The community usually releases updates

quarterly; these minor versions accumulate such fixes. For

example, version 12.5 contains bug fixes for the 12.4 release,

while version 17.1 provides fixes for PostgreSQL 17.0.

7

i

Support

PostgreSQL Global Development Group supports major re-

leases for five years. Both support and development are

managed through mailing lists. A properly filed bug report

has a high likelihood of being addressed quickly; bug fixes

can be released in as little as 24 hours.

Aside from the community support, 24x7commercial support

for PostgreSQL is also provided by a number of companies

in different countries, including Postgres Professional (www.

postgrespro.com).

Current State

PostgreSQL is one of the most popular databases. Based

on the solid foundation of academic development, over sev-

eral decades PostgreSQL has evolved into an enterprise-

level product that is now a real alternative to commercial

databases. You can see it for yourself by looking at the key

features of PostgreSQL17, which is the latest released version

right now.

Reliability and Stability

Reliability is especially important in enterprise-level appli-

cations that handle business-critical data. For this purpose,

PostgreSQL provides support for hot standby servers, point-

in-time recovery, different types of replication (synchronous,

asynchronous, cascade).

https://www.postgrespro.com
https://www.postgrespro.com

8

i

Security

PostgreSQL supports secure SSL connections and provides

various authentication methods, such as password authen-

tication (including SCRAM), client certificates, and external

authentication services (LDAP, RADIUS, PAM, Kerberos).

For user management and database access control, the fol-

lowing features are provided:

• creating and managing new users and group roles

• role- and group-based access control to database objects

• row-level and column-level security

• SELinux support via a built-in SE-PostgreSQL functionality

(Mandatory Access Control)

Russian Federal Service for Technical and Export Control has

certified a custom PostgreSQL version released by Postgres

Professional for use in data processing systems for personal

data and classified information.

Conformance to the SQL Standard

As the ANSI SQL standard is evolving, its support is constantly

being added to PostgreSQL. This is true for all versions of

the standard, from SQL-92 to the most recent SQL:2023. For

example, PostgreSQL 17 fully supports all JSON operations as

described in the SQL:2016 Standard.

In general, PostgreSQL provides a high rate of conformance

to the SQL standard, supporting 170 out of 177 mandatory

features and many optional ones.

9

i

Transaction Support

PostgreSQL provides full support for ACID properties and ef-

ficient transaction isolation based on the multi-version con-

currency control (MVCC). This method avoids locking in all

cases except for concurrent updates to the same row by dif-

ferent processes. Reading transactions never block writing

ones, and writing never blocks reading.

This is true even for the serializable isolation level, which is

the strictest one. Using an innovative Serializable Snapshot

Isolation system, this level ensures that there are no serializa-

tion anomalies and guarantees that concurrent transaction

execution produces the same result as sequential one.

For Application Developers

Application developers get a rich toolset for creating appli-

cations of any type:

• Support for various server programming languages: built-

in PL/pgSQL (which is closely integrated with SQL), C for

performance-critical tasks, Perl, Python, Tcl, as well as

JavaScript, Java, etc.

• APIs to access the database from applications written in

virtually any language, including the standard ODBC and

JDBC APIs.

• A rich set of database objects that allow you to efficiently

implement the logic of any complexity on the server

side: tables and indexes, sequences, integrity constraints,

views and materialized views, partitioning, subqueries

and WITH-queries (including recursive ones), aggregate

and window functions, stored functions, triggers, etc.

10

i

• Aflexible full-text search system that supports a variety of

languages, extended with efficient index access methods.

• Semi-structured data typical of NoSQL: hstore (storage of

key–value pairs), xml, json (represented as text or in a

more robust jsonb binary format).

• Foreign Data Wrappers. This feature allows adding new

data sources as external tables by the SQL/MED standard.

You can use anymajor database as an external data source.

PostgreSQL provides full support for foreign data, includ-

ing write access and distributed query execution.

Scalability and Performance

PostgreSQL takes advantage of the modern multi-core CPU

architecture. Its performance grows almost linearly as the

number of cores increases.

PostgreSQL can parallelize queries and some commands

(such as index creation and vacuuming). In this mode, reads

and joins are performed by several concurrent processes. JIT-

compilation of queries can speed up operations thanks to

better use of hardware resources. Each PostgreSQL version

adds new parallelization features.

Horizontal scaling can rely on both physical and logical

replication. It allows you to build PostgreSQL-based clus-

ters to achieve high performance, fault tolerance, and geo-

distribution. Some examples of such systems are Citus (Citus-

data), Postgres-BDR (2ndQuadrant), Multimaster and BiHA

(Postgres Professional), Patroni (Zalando).

11

i

Query Planner

PostgreSQL relies on a cost-based query planner. Using the

collected statistics and taking into account both disk opera-

tions and CPU time in its mathematical models, the planner

can optimize even the most complex queries. It can use all

access paths and join methods available in state-of-the-art

commercial database systems.

Indexing

PostgreSQL provides various types of indexes. Apart from tra-

ditional B-trees, you can use many other access methods.

• Hash,

a hash-based index. Unlike B-trees, such indexes work

only for equality checks, but in some cases they can prove

to be more efficient and compact.

• GiST,

a generalized balanced search tree. This access method

is used for the data that cannot be ordered. For exam-

ple, R-trees index points on a plane and facilitate fast

k-nearest neighbor (k-NN) searches or indexing overlap-

ping intervals.

• SP-GiST,

a generalized non-balanced tree based on dividing the

search space into non-intersecting nested partitions. For

example, quad-trees for spatial data and radix trees for

text strings.

• GIN,

a generalized inverted index used for compound multi-

element values. It is mainly applied in full-text search to

12

i

find documents that contain the words used in the search

query. Another example is search for elements in data

arrays.

• RUM,

an enhancement of the GIN method for full-text search.

Available as an extension, this index type can speed up

phrase search and return the results in the order of rele-

vance without any additional computations.

• BRIN,

a compact structure that provides a trade-off between the

index size and search efficiency. Such index is useful for

huge clustered tables.

• Bloom,

an index based on the Bloom filter. Having a compact rep-

resentation, this index can quickly filter out non-matching

tuples, but the remaining ones have to be re-checked.

Many index types can be built upon both a single column and

multiple columns. Regardless of the type, you can build in-

dexes not only on columns, but also on arbitrary expressions.

It is also possible to create partial indexes for specific sets

of rows. Covering indexes can speed up queries, since all the

required data is retrieved from the index itself, avoiding heap

access.

The planner can use a bitmap scan, which allows combining

several indexes together for faster access.

Cross-Platform Support

PostgreSQL runs both on Unix operating systems (including

server and client Linux distributions, FreeBSD, Solaris, and

macOS) and on Windows systems.

13

i

Its portable open-source C code allows building PostgreSQL

on a variety of platforms, even if there is no package sup-

ported by the community.

Extensibility

One of the main advantages of PostgreSQL architecture is

extensibility. Without changing the core system code, users

can add various features, such as:

• data types

• functions and operators to support new data types

• index and table access methods

• server programming languages

• foreign data wrappers

• loadable extensions

Comprehensive extension support allows for the develop-

ment of new features of any complexity, which can be in-

stalled on demand without modifying the PostgreSQL core.

For example, the following complex systems are built as ex-

tensions:

• CitusDB,

which implements massively parallel query execution and

data distribution between different PostgreSQL instances

(sharding).

• PostGIS,

one of the most popular and powerful geoinformation

data processing systems.

14

i

• TimescaleDB,

which provides support for time-series data, including

special partitioning and sharding.

The standard PostgreSQL 17 distribution alone includes

about fifty extensions that have proved to be useful and reli-

able.

Availability

A liberal PostgreSQL license, which is similar to BSD and MIT

licenses, allows unrestricted use of PostgreSQL; you may also

modify PostgreSQL code without any limitations and inte-

grate it into other products, including commercial and closed-

source software.

Independence

PostgreSQL does not belong to any company; it is developed

by the international community, which includes developers

from all over the world. It means that systems using Post-

greSQL do not depend on a particular vendor, thus keeping

the investment safe in any circumstances.

II What’s New in

PostgreSQL 17

If you are familiar with the previous versions of PostgreSQL,

this chapter can give you a sense of what has changed over

the past year. It mentions only some of the updates; for the

full list of changes, see the Release Notes: postgrespro.com/

docs/postgresql/17/release-17. You can also follow our blog

to keep up with the news: https://habr.com/en/companies/

postgrespro/articles/.

SQL Commands

Improved MERGE command. The new WHEN NOT MATCHED BY

SOURCE clause now lets you work with rows from the target

relation which are not in the source, the RETURNING clause is

now supported, and you can use views as targets same way

you did with tables.

The COPY FROM command can now be forced to ignore er-

rors caused by invalid value formats in some columns, cour-

tesy of the new parameter on_error. And the parameter

log_verbosity will display the skipped values as NOTICE-

level messages. A future enhancement may allow pushing

invalid values into a separate table.

https://postgrespro.com/docs/postgresql/17/release-17
https://postgrespro.com/docs/postgresql/17/release-17
https://https://habr.com/en/companies/postgrespro/articles/
https://https://habr.com/en/companies/postgrespro/articles/

16

ii

You can now alter generated table expressions using the

command ALTER COLUMN with the SET EXPRESSION clause.

Previously, the only option was to remove it.

The abbreviation AT LOCAL for the current time zone can now

be used instead of AT TIME ZONE with a time zone value, as

defined in the SQL standard.

Functions and types

The overloaded function random now accepts two param-

eters to define the minimum and maximum values for the

random number. Supports int, bigint and numeric values.

The type interval now supports infinite values.

In addition to to_hex for hexadecimal, similar functions are

added for binary (to_bin) and octal (to_oct) systems.

New format masks for the to_timestamp function: TZ (for

Time Zone) and OF (Offset from UTC). Previously, you had to

use to_char.

The function xmltext, as defined in the SQL Standard, con-

verts the input string to XML, properly escaping special char-

acters.

New Unicode functions: unicode_assigned checks if ev-

ery character in a string has a valid Unicode value, uni-

code_version returns the Unicode version for PostgreSQL,

and icu_unicode_version returns the ICU version.

Parameter names have been assigned to some aggregate

function definitions with more than one parameter.

17

ii

SQL/JSON

The glorious epic that is implementation of the 2016 SQL/

JSON Standard has now concluded. The missing functions

JSON_EXISTS, JSON_QUERY, JSON_VALUE and JSON_TABLE are

finally in, and the jsonpath language gets new methods

for data conversion into bigint, boolean, date, decimal,

integer, number, string, time_tz, time, timestamp_tz

and timestamp.

Logical replication

Upgrading ismuch easier now. The pg_upgrade toolmigrates

replication slots to the publisher, so subscribers just have to

update the connection string. And when upgrading the sub-

scriber, all subscriptions stay intact and replication continues

without the need to resynchronize.

A logical replica can use a physical one as a base: it already

has all the tables synchronized, so setting up the replica-

tion will not take long. The new tool pg_createsubscriber

switches the physical replica into read-write mode, creates

the publisher and subscriber pairs in one or several databases

on both servers, and specifies the position to continue repli-

cating from in the subscriptions’ properties.

Logical slots are migrated to replicas and kept up to date.

After switchover, all you have to do is update the connec-

tion string to point to the new server, and the replication

resumes.

You can check what replication workers are doing in the

pg_stat_subscription view’s new column worker_type.

18

ii

Possible values are: apply, parallel apply, and table syn-

chronization.

The columns conflicting and invalidation_reason in the

pg_stat_replication view show if and why the logical repli-

cation slot became invalid.

In addition to that, logical decoding and, consequently, log-

ical replication have been significantly optimized for cases

with large numbers of subtransactions.

Vacuum

Vacuum is now much less memory-intensive thanks to the

new dead tuples storage utilizing radix trees. Additionally,

tuple ID lookup is faster, memory is allocated dynamically

(used to be all maintenance_work_mem at once), and the

1 GB hard cap is no more. Now, most tables will be vacuumed

in one pass, avoiding repeat index scans.

Vacuum monitoring has improved. There are two new

columns in pg_stat_progress_vacuum: total number of in-

dexes to be vacuumed (indexes_total) and the number of

indexes already vacuumed (indexes_processed).

WALsize is now smaller in cases where rows are frozen during

vacuuming. Both events are treated as one record in WAL.

Backup and upgrade

Incremental backup on the page level has been added to

PostgreSQL. The process walsummarizer (with the param-

eter summarize_wal) reads WAL and records which pages

19

ii

are modified. The pg_basebackup tool’s new parameter

--incremental enables incremental backup and utilizes the

new replication protocol features. pg_combinebackup is the

recovery tool that assembles the full backup from the incre-

mental backup and all the backups it depends on.

You can specify the database to connect to as the param-

eter dbname in pg_basebackup and pg_receivewal. The

former (with the -R key) will also add the database name

to primary_conninfo when writing to postgresql.auto.conf.

Neither tool needs the database name as such, but it is re-

quired when connecting over a proxy and when setting up

replication slot synchronization on a replica.

New keys for pg_dump: --filter specifies a file with a list

of objects to be included into or excluded from the dump.

--exclude-extension excludes a list of extensions.

Quicker upgrades with pg_upgrade for databases with mul-

tiple large objects and tables. pg_dump now groups

the large objects in the backup index, and pg_restore

commits changes in transactions of the size specified in

--transaction-size. Additionally, for parallel recovery, the

leader process logic is improved.

Access control

New privilege MAINTAIN for ANALYZE, VACUUM (including

VACUUM FULL), CLUSTER, REINDEX, REFRESH MATERIALIZED

VIEW and LOCK TABLE. Membership in pg_maintain grants

this privilege for every relation in the database.

20

ii

Direct connection over TLS is now available for client ap-

plications using libpq. Enabled by setting the parameter

sslnegotiation to requiredirect.

New default privilege display: psql returns (none) if there

are no privileges, and also respects \pset null.

Query planning and execution

Materialized CTE statistics are now available to the planner.

This includes CTE column statistics and row sorting order.

The planner can swap tables in GROUP BY, for example, to uti-

lize index or incremental sorting.

Functions with subtransactions are now PARALLEL SAFE. This

includes, in particular, PL/pgSQL functions with EXCEPTION

blocks. Additionally, the parallel section of the plan can also

include InitPlan nodes.

Improvements for the EXPLAIN command:

• The parameter memory displays how much memory was

used to design the plan.

• The parameter serialize shows the cost of conversion of

the query result into a text or binary format to be sent to

the client (particularly for TOAST assembly).

• Improved readability of SubPlan and InitPlan nodes.

Many indexing features have always been available for

B-trees only. Now, other index types can take advantage of

them too:

• Hash indexes allows for identifying altered rows on the

logical replication subscriber.

21

ii

• Incremental sorting works with GiST and SP-GiST indexes.

• BRIN indexes can be created in parallel.

Some partitioning improvements:

• You can now set exclusion constraints.

• Full support for GENERATED AS IDENTITY columns.

Monitoring

The new view pg_stat_checkpointer displays checkpointer

process statistics, previously available in pg_stat_bgwriter.

It also shows replica restart points statistics. Columns buf-

fers_backend and buffers_backend_fsync are gone from

pg_stat_bgwriter, since pg_stat_io now shows more ac-

curate data about the processes.

pg_stat_statements view:

• New columns tracking full statistics reset times and min-

imum and maximum time statistics (stats_since and

minmax_stats_since).

• Normalization of commands CALL, PREPARE TRANSACTION,

COMMIT/ROLLBACK PREPARED and DEALLOCATE: their pa-

rameters are replaced with constant values, so the com-

mands will be recorded as a single event.

Range type column statistics are now available in pg_stats.

Extension developers can now define their own wait events.

The pioneers are the people behind the dblink and post-

gres_fdw extensions.

Wait event types and descriptions are available in the new

view pg_wait_events as well as in the documentation.

22

ii

Event triggers

You can finally create an ON LOGIN trigger for database con-

nection events.

Event triggers work for the REINDEX command.

The parameter event_triggers enables or disables event

triggers, primarily for debugging purposes.

Configuration parameters

The parameter old_snapshot_threshold, first introduced in

PostgreSQL9.6, is gone, after issues with implementation and

efficiency came up.

The new parameter transaction_timeout limits total trans-

action time. Old statement_timeout and idle_in_trans-

action_session_timeout parameters did not guarantee

that a transaction will complete or terminate within a spe-

cific timeframe.

The parameter huge_pages_status shows if any huge pages

were allocated if huge_pages = try.

Some new configuration parameters define SLRU cache sizes,

allowing for more fine-tuning:

• commit_timestamp_buffers — time of commit,

• multixact_member_buffers and

multixact_offset_buffers —multitransactions,

• subtransaction_buffers —nested transactions,

• notify_buffers —asynchronous messages,

23

ii

• transaction_buffers — transaction statuses,

• serializable_buffers — serializable transaction con-

flicts.

The ALTER SYSTEM command now can record custom pa-

rameters to postgresql.auto.conf. The parameter allow_al-

ter_system can block ALTER SYSTEM from accidentally alter-

ing the configuration.

Localization

New stock provider with support for C and C.UTF8 locales.

Miscellaneous

You can use the key --synch-method to set the disc synchro-

nization method for some utilities: initdb, pg_basebackup,

pg_checksums, pg_rewind, pg_upgrade and pg_dump. The

default method is fsync.

The walsender process readsWAL records from buffers when

possible, bypassing the file system.

Previously, PostgreSQL sent a separate system call for each

page and hoped that the OS would combine these operations

on its end. Now, the multiblock read infrastructure exists: a

sequence of pages (up to io_combine_limit bytes at a time)

can be retrieved in one pass. Asynchronous reading is to be

added in the future, enabling page processing as they come

in, without waiting for the operation to complete.

III Installation

and Quick Start

What is required to get started with PostgreSQL? In this chap-

ter, we’ll learn how to install PostgreSQL and manage the

corresponding service. In the next chapter, we’ll continue by

creating a simple database and trying out some basic SQL

queries.

We are going to use a regular (often called “vanilla”) distri-

bution of PostgreSQL 17. Depending on your operating sys-

tem, the process of installing and setting up PostgreSQL will

differ:

• If you are using Windows, read on.

• To set up PostgreSQL on Linux-based Debian or Ubuntu

systems, go to p. 30.

For other operating systems, you can view installation in-

structions online: www.postgresql.org/download.

You can also use Postgres Pro Standard 17: it is fully com-

patible with vanilla PostgreSQL, includes some additional

features developed by Postgres Professional, and is free when

used for trial or educational purposes. Check out installation

instructions at postgrespro.com/products/download in this

case.

https://www.postgresql.org/download
https://postgrespro.com/products/download

26

iii

Windows

Installation

Download the PostgreSQL installer, launch it, and select the

installation language: postgrespro.com/windows.

The installer provides a conventional wizard interface: you

can simply keep clicking the “Next”button if you are fine with

the default options. Let’s go over the main steps.

Choose components (keep the current selection if you are

unsure of what to choose):

Then you have to specify PostgreSQL installation directory.

By default, the PostgreSQL server is installed in C:\Program

Files\PostgreSQL\17.

https://postgrespro.com/windows

27

iii

You can also specify the location of the data directory.

This directorywill hold all the information stored in your data-

base system, so make sure you have enough disk space if you

plan to keep a lot of data.

If you plan to store data in a non-English language, ensure

that you select the corresponding locale (or leave it as “De-

fault” if your Windows locale settings are correct).

Enter and confirm the password for the postgres database

user. You should also select the “Set up environment vari-

ables” checkbox to connect to the PostgreSQL server as the

current OS user.

You can leave the default settings in all the other fields.

28

iii

If you are planning to install PostgreSQL for training purposes

only, you can select the “Use the default settings” option for

the database system to take up less RAM.

Managing the Service and the Main Files

When PostgreSQL is installed, the “postgresql-17” service is

registered on your system. This service is launched auto-

matically at the system startup under the Network Service

account. If required, you can change the service settings us-

ing the standard Windows options.

To temporarily stop the service, run the “Stop Server” program

from the Start menu subfolder that you have selected at in-

stallation time.

29

iii

To start the service, run the “Start Server” program from the

same folder.

If an error occurs when starting the service, you can view the

server log to find out its cause. The log file is located in the

log subdirectory of the database directory chosen at installa-

tion time (you can typically find it at C:\Program Files\Post-

greSQL\17\data\log). Logging is regularly switched to a new

file. You can find the required file either by the last modified

date or by the filename that includes the date and time of

the switchover to this file.

There are several important configuration files that define

server settings. They are located in the database directory.

You do not have to modify them to get started with Post-

greSQL, but you’ll definitely need them in real work. Take a

look into these files; they are fully documented:

30

iii

• postgresql.conf is the main configuration file that con-

tains server parameters.

• pg_hba.conf defines access rules. For security reasons, the

default configuration only allows local system access, re-

quiring password authentication.

Nowwe are ready to connect to the database and tryout some

commands and SQL queries. Go to the “Trying SQL” chapter

on p. 35.

Debian and Ubuntu

Installation

If you are using Linux, you need to add PGDG (PostgreSQL

Global Development Group) package repository. At the mo-

ment, the supported Debian versions are 10 “Buster,” 11 “Bulls-

eye,” and 12 “Bookworm.” The currently supported Ubuntu

versions are 20.04 “Focal,” 22.04 “Jammy,” 23.10 “Mantic” and

24.04 “Noble”.

Run the following commands in the console window:

$ sudo apt-get install lsb-release

$ sudo sh -c 'echo "deb \

http://apt.postgresql.org/pub/repos/apt/ \

$(lsb_release-cs)-pgdg main" \

> /etc/apt/sources.list.d/pgdg.list'

$ wget --quiet -O - \

https://postgresql.org/media/keys/ACCC4CF8.asc \

| sudo apt-key add -

Once the repository is added, let’s update the list of pack-

ages:

31

iii

$ sudo apt-get update

Before starting the installation, check localization settings:

$ locale

If you plan to process non-English data, the LC_CTYPE and

LC_COLLATE variables may have to be configured. For exam-

ple, it makes sense to set these variables to “fr_FR.UTF8” for

the French language, even though the “en_US.UTF8” may do

too:

$ export LC_CTYPE=fr_FR.UTF8

$ export LC_COLLATE=fr_FR.UTF8

You should also make sure that the operating system has the

required locale installed:

$ locale -a | grep fr_FR

fr_FR.utf8

If this is not the case, generate the locale, as follows:

$ sudo locale-gen fr_FR.utf8

Now we can start the installation:

$ sudo apt-get install postgresql-17

It was the final step; once the installation command com-

pletes, PostgreSQL will be installed and launched. To check

that the server is ready to use, run:

$ sudo -u postgres psql -c 'select version()'

If all went well, the current PostgreSQL version is returned.

32

iii

Managing the Service and the Main Files

When PostgreSQL is installed, a special postgres user is cre-

ated on your system. All the server processes work on behalf

of this user, and all the database files belong to this user as

well. PostgreSQL will be started automatically at the operat-

ing system boot. It’s not a problem with the default settings:

if you are not working with the database server, it consumes

very little of system resources. If you decide to disable auto-

matic startup, run:

$ sudo systemctl disable postgresql

To temporarily stop the database server service, enter:

$ sudo systemctl stop postgresql

You can launch the server service as follows:

$ sudo systemctl start postgresql

You can also check the current state of the service:

$ sudo systemctl status postgresql

If the service fails to start, check the server log for details.

Take a closer look at the latest log entries in /var/log/post-

gresql/postgresql-17-main.log.

All information stored in the database is located in the

/var/lib/postgresql/17/main/ directory. If you are going to

keep a lot of data, make sure that you have enough disk

space.

33

iii

Server settings are defined by several configuration files.

There’s no need to edit all these files to get started, but it’s

worth checking them out since you’ll definitely need them in

the future:

• /etc/postgresql/17/main/postgresql.conf is the main con-

figuration file that contains server parameters.

• /etc/postgresql/17/main/pg_hba.conf file defines access

settings. For security reasons, the default configuration

only allows access from the local system on behalf of the

database user that has the same name as the current OS

user.

Now it’s time to connect to the database and try out SQL.

IV Trying SQL

Connecting via psql

To connect to the database server and start executing com-

mands, you need to have a client application. In the “Post-

greSQL for Applications” chapter, we will talk about sending

queries from applications written in different programming

languages. And here we’ll explain how to work with the psql

client from the command line in interactive mode.

Unfortunately, many people are not very fond of the com-

mand line nowadays. Yet it is really worth mastering.

First of all, psql is a standard client application included in

all PostgreSQL packages, so it’s always available. Having a

customized environment is beneficial, but there is no need

to get lost on an unfamiliar system.

Secondly, psql is really convenient for everyday DBA tasks,

writing small queries, and automating processes. For exam-

ple, you can use it to periodically deploy application code

updates on your database server. The psql client provides

its own commands that can help you find your way around

database objects and display the data stored in tables in a

convenient format.

However, if you are used to working in graphical user inter-

faces, try pgAdmin (we’ll get back to it later) or other simi-

36

iv

lar products: wiki.postgresql.org/wiki/Community_Guide_to_

PostgreSQL_GUI_Tools.

To start psql on a Linux system, run this command:

$ sudo -u postgres psql

On Windows, open the

Start menu and launch the

“SQL Shell (psql)” program.

When prompted, enter the

password for the postgres

user that you set when in-

stalling PostgreSQL.

Windows users may run

into encoding issues when

viewing non-Latin charac-

ters in the terminal. If that

is the case, make sure that

a TrueType font is selected

in the properties of the ter-

minal window (typically, “Lucida Console” or “Consolas”).

As a result, you should see the same prompt on both oper-

ating systems: postgres=#. Here “postgres” is the name of

the database to which you are connected right now. A single

PostgreSQL server can serve several databases, but you can

work only with one of them at a time.

Now let’s try out some commands. Enter only the part printed

in bold; the prompt and the system response are provided

here solely for your convenience.

http://wiki.postgresql.org/wiki/Community_Guide_to_PostgreSQL_GUI_Tools
http://wiki.postgresql.org/wiki/Community_Guide_to_PostgreSQL_GUI_Tools

37

iv

Databases

Let’s create a new database called test:

postgres=# CREATE DATABASE test;

CREATE DATABASE

Don’t forget to finish each command with a semicolon: Post-

greSQL expects you to continue typing until you enter this

symbol (so you can split the command between multiple

lines).

Now let’s connect to the created database:

postgres=# \c test

You are now connected to database "test" as user

"postgres".

test=#

As you can see, the command prompt has changed to

test=#.

The command that we’ve just entered does not look like SQL,

as it starts with a backslash. This is a convention for special

commands that can only be run in psql. If you are using

pgAdmin or another GUI tool, skip all commands startingwith

a backslash or find an equivalent.

There are quite a few psql commands, and we’ll use some of

them a bit later. To get the full list of psql commands right

now, you can run:

test=# \?

Since the reference information is quite bulky, it will be dis-

played in a pager program of your operating system, which

is usually more or less.

38

iv

Tables

Relational database management systems present data as

tables. The structure of the table is defined by its columns;

the data itself is stored in table rows. The data is not ordered,

so rows are not necessarily stored in the same order theywere

added to the table.

For each column, a data type is defined. All the values

in the corresponding row fields must belong to this type.

You can use multiple built-in data types provided by Post-

greSQL (postgrespro.com/doc/datatype) or add your own cus-

tom types, but here we’ll cover just a few main ones:

• integer

• text

• boolean, which is a logical data type taking true or false

values

Apart from regular values defined by the data type, a field

can be NULL. It can be interpreted as “the value is unknown”

or “the value is not set.”

Let’s create a table of university courses:

test=# CREATE TABLE courses(

test(# c_no text PRIMARY KEY,

test(# title text,

test(# hours integer

test(#);

CREATE TABLE

Note that the psql command prompt has changed: it is a

hint that the command continues on the new line. For con-

venience, we will not repeat the prompt on each line in the

examples that follow.

https://postgrespro.com/doc/datatype

39

iv

The above command creates the courses table with three

columns: c_no specifies the course number represented as

a text string, title provides the course title, and hours lists

an integer number of lecture hours.

Apart from columns and data types, we can define integrity

constraints that will be checked automatically: PostgreSQL

will not allow invalid data in the database. In this exam-

ple, we have added the PRIMARY KEY constraint for the c_no

column. It means that all the values in this column must

be unique, and NULLs are not allowed. Such a column can

be used to distinguish one table row from another. The

postgrespro.com/doc/ddl-constraints page lists all the avail-

able constraints.

You can find the exact syntax of the CREATE TABLE command

in the documentation, or view command-line help right in

psql:

test=# \help CREATE TABLE

Such reference information is available for each SQL com-

mand. To get the full list of SQLcommands, run \helpwithout

arguments.

Filling Tables with Data

Let’s insert some rows into the created table:

test=# INSERT INTO courses(c_no, title, hours)

VALUES ('CS301', 'Databases', 30),

('CS305', 'Networks', 60);

INSERT 0 2

http://postgrespro.com/doc/ddl-constraints

40

iv

If you need to perform a bulk data upload from an external

source, the INSERT command is not the best choice. Instead,

you can use the COPY command specifically designed for this

purpose: postgrespro.com/doc/sql-copy.

We’ll need two more tables for subsequent examples: stu-

dents and exams.

For each student, we are going to store their name and the

year of admission (start year). The student ID number will

serve as the student’s identifier.

test=# CREATE TABLE students(

s_id integer PRIMARY KEY,

name text,

start_year integer

);

CREATE TABLE

test=# INSERT INTO students(s_id, name, start_year)

VALUES (1451, 'Anna', 2014),

(1432, 'Victor', 2014),

(1556, 'Nina', 2015);

INSERT 0 3

The exams table contains all the scores received by students

in the corresponding course. Thus, students and courses are

connected by the many-to-many relationship: each student

can take exams in multiple courses, and each exam can be

taken by multiple students.

Each table row is uniquely identified by the combination of

a student ID and a course number. Such an integrity con-

straint pertaining to several columns at once is defined by

the CONSTRAINT clause:

https://postgrespro.com/doc/sql-copy

41

iv

test=# CREATE TABLE exams(

s_id integer REFERENCES students(s_id),

c_no text REFERENCES courses(c_no),

score integer,

CONSTRAINT pk PRIMARY KEY(s_id, c_no)

);

CREATE TABLE

Besides, the REFERENCES clause here defines two referential

integrity checks called foreign keys. Such keys show that the

values of one table reference rows of another table.

After any action performed on the database, PostgreSQL

checks that all the s_id identifiers in the exams table corre-

spond to real students (that is, entries in the students table),

while c_no course numbers correspond to real courses. Thus,

it is impossible to assign a score on a non-existing subject

or to a non-existent student, regardless of the user actions

or possible application errors.

Let’s assign several scores to our students:

test=# INSERT INTO exams(s_id, c_no, score)

VALUES (1451, 'CS301', 5),

(1556, 'CS301', 5),

(1451, 'CS305', 5),

(1432, 'CS305', 4);

INSERT 0 4

Data Retrieval

Simple Queries

To read data from tables, use the SQL operator SELECT. For

example, let’s display two columns of the courses table. The

AS clause allows you to rename the column if required:

42

iv

test=# SELECT title AS course_title, hours

FROM courses;

course_title | hours

−−−−−−−−−−−−−−+−−−−−−−

Databases | 30

Networks | 60

(2 rows)

The asterisk * displays all the columns:

test=# SELECT * FROM courses;

c_no | title | hours

−−−−−−−+−−−−−−−−−−−−−+−−−−−−−

CS301 | Databases | 30

CS305 | Networks | 60

(2 rows)

In production applications, it is recommended to explicitly

specify only those columns that are really needed: then the

query is performed more efficiently, and the result does not

depend on new columns that may appear. But in interactive

queries you can simply use an asterisk.

The result can contain several rows with the same data. Even

if all rows in the original table are different, the data can

appear duplicated if not all the columns are displayed:

test=# SELECT start_year FROM students;

start_year

−−−−−−−−−−−−

2014

2014

2015

(3 rows)

To select all different start years, specify the DISTINCT key-

word after SELECT:

43

iv

test=# SELECT DISTINCT start_year FROM students;

start_year

−−−−−−−−−−−−

2014

2015

(2 rows)

For details, see the documentation: postgrespro.com/doc/

sql-select#SQL-DISTINCT.

In general, you can use any expressions after the SELECT op-

erator. And if you omit the FROM clause, the query will return

a single row. For example:

test=# SELECT 2+2 AS result;

result

−−−−−−−−

4

(1 row)

When you select some data from a table, it is usually required

to return only those rows that satisfy a certain condition. This

filtering condition is specified in the WHERE clause:

test=# SELECT * FROM courses WHERE hours > 45;

c_no | title | hours

−−−−−−−+−−−−−−−−−−+−−−−−−−

CS305 | Networks | 60

(1 row)

The condition must be of a logical type. For example, it can

contain operators =, <> (or !=), >, >=, <, <=, as well as combine

simple conditions using logical operations AND, OR, NOT, and

parenthesis (like in regular programming languages).

Handling NULLs is a bit more subtle. The result will contain

only those rows for which the filtering condition is true; if

the condition is false or undefined, the row is excluded.

https://postgrespro.com/doc/sql-select#SQL-DISTINCT
https://postgrespro.com/doc/sql-select#SQL-DISTINCT

44

iv

Remember:

• The result of comparing something to NULL is undefined.

• The result of logical operations on NULLs is usually unde-

fined (exceptions: true OR NULL = true, false AND NULL =

false).

• To check whether the value is undefined, the following

operators are used: IS NULL (IS NOT NULL) and IS DISTINCT

FROM (IS NOT DISTINCT FROM).

The coalesce expression is often used to replace NULL values

with something else, such as an empty string for text types

or zero for numeric types.

For more details, see the documentation: postgrespro.com/

doc/functions-comparison.

Joins

Awell-designed database should not contain redundant data.

For example, the exams table must not contain student

names, as this information can be found in another table

by the number of the student ID card.

For this reason, to get all the required values in a query, it is

often necessary to join the data of several tables, specifying

their names in the FROM clause:

test=# SELECT * FROM courses, exams;

c_no | title | hours | s_id | c_no | score

−−−−−−−+−−−−−−−−−−−−−+−−−−−−−+−−−−−−+−−−−−−−+−−−−−−−

CS301 | Databases | 30 | 1451 | CS301 | 5

CS305 | Networks | 60 | 1451 | CS301 | 5

CS301 | Databases | 30 | 1556 | CS301 | 5

https://postgrespro.com/doc/functions-comparison
https://postgrespro.com/doc/functions-comparison

45

iv

CS305 | Networks | 60 | 1556 | CS301 | 5

CS301 | Databases | 30 | 1451 | CS305 | 5

CS305 | Networks | 60 | 1451 | CS305 | 5

CS301 | Databases | 30 | 1432 | CS305 | 4

CS305 | Networks | 60 | 1432 | CS305 | 4

(8 rows)

This result is called the direct or Cartesian product of tables:

each row of one table is appended to each row of the other

table.

As a rule, you can get a more useful and informative result

if you specify the join condition in the WHERE clause. Let’s

match the courses to the corresponding exams to get all the

scores for all the courses:

test=# SELECT courses.title, exams.s_id, exams.score

FROM courses, exams

WHERE courses.c_no = exams.c_no;

title | s_id | score

−−−−−−−−−−−−−+−−−−−−+−−−−−−−

Databases | 1451 | 5

Databases | 1556 | 5

Networks | 1451 | 5

Networks | 1432 | 4

(4 rows)

Another way to join tables is to explicitly use the JOIN key-

word. Let’s display all the students and their scores for the

“Networks” course:

test=# SELECT students.name, exams.score

FROM students

JOIN exams

ON students.s_id = exams.s_id

AND exams.c_no = 'CS305';

46

iv

name | score

−−−−−−−−+−−−−−−−

Anna | 5

Victor | 4

(2 rows)

From the database point of view, these queries are com-

pletely equivalent, so you can use any approach that seems

more natural.

In this example, the result does not include any rows of the

table specified on the left side of the join clause if they have

no pair in the right table: although the condition is applied

to the subjects, the students that did not take the exam in

this subject are also excluded. To include all the students

into the result, we have to use the outer join:

test=# SELECT students.name, exams.score

FROM students

LEFT JOIN exams

ON students.s_id = exams.s_id

AND exams.c_no = 'CS305';

name | score

−−−−−−−−+−−−−−−−

Anna | 5

Victor | 4

Nina |

(3 rows)

Note that the rows of the left table that don’t have a coun-

terpart in the right table are added to the result (that’s why

the operation is called LEFT JOIN). The corresponding values

of the right table are NULL in this case.

The WHERE conditions are applied to the result of the join

operation. Thus, if you move the subject restriction from the

join condition to the WHERE clause, Ninawill be excluded from

the result because the corresponding exams.c_no is NULL:

47

iv

test=# SELECT students.name, exams.score

FROM students

LEFT JOIN exams ON students.s_id = exams.s_id

WHERE exams.c_no = 'CS305';

name | score

−−−−−−−−+−−−−−−−

Anna | 5

Victor | 4

(2 rows)

Don’t be afraid of joins. It is a commonoperation for database

management systems, and PostgreSQL has a whole range of

efficient mechanisms to perform it. Do not join data at the

application level; let the database server handle it properly.

For more details, see the documentation: postgrespro.com/

doc/sql-select#SQL-FROM.

Subqueries

The SELECT operation returns a table, which can be displayed

as the query result (as we have already seen) or used in an-

other SQL query. Such a nested SELECT command in paren-

theses is called a subquery.

If a subquery returns exactly one row and one column, you

can use it as a regular scalar expression:

test=# SELECT name,

(SELECT score

FROM exams

WHERE exams.s_id = students.s_id

AND exams.c_no = 'CS305')

FROM students;

https://postgrespro.com/doc/sql-select#SQL-FROM
https://postgrespro.com/doc/sql-select#SQL-FROM

48

iv

name | score

−−−−−−−−+−−−−−−−

Anna | 5

Victor | 4

Nina |

(3 rows)

If a scalar subquery used in the list of SELECT expressions

does not contain any rows, NULL is returned (as in the last row

of the result in the example above). Thus, you can expand

scalar subqueries by replacing them with a join, but it must

be an outer join.

Scalar subqueries can also be used in filtering conditions.

Let’s display all the exams taken by the students enrolled

after 2014:

test=# SELECT *

FROM exams

WHERE (SELECT start_year FROM students

WHERE students.s_id = exams.s_id) > 2014;

s_id | c_no | score

−−−−−−+−−−−−−−+−−−−−−−

1556 | CS301 | 5

(1 row)

You can also add filtering conditions to subqueries returning

an arbitrary number of rows. SQL offers several predicates

for this purpose. For example, IN checks whether the table

returned by the subquery contains the specified value.

Let’s display all the students who have any scores in the spec-

ified course:

test=# SELECT name, start_year

FROM students

WHERE s_id IN (SELECT s_id FROM exams

WHERE c_no = 'CS305');

49

iv

name | start_year

−−−−−−−−+−−−−−−−−−−−−

Anna | 2014

Victor | 2014

(2 rows)

There is also the NOT IN form of this predicate, which returns

the opposite result. For example, the following query returns

the list of students who did not get any excellent scores:

test=# SELECT name, start_year

FROM students

WHERE s_id NOT IN (SELECT s_id

FROM exams

WHERE score = 5);

name | start_year

−−−−−−−−+−−−−−−−−−−−−

Victor | 2014

(1 rows)

Note that this query result can also include those students

who have not received any scores at all.

Another option is to use the EXISTS predicate, which checks

whether the subquery returns at least one row. With this

predicate, you can rewrite the previous query as follows:

test=# SELECT name, start_year

FROM students

WHERE NOT EXISTS (SELECT s_id

FROM exams

WHERE exams.s_id = students.s_id

AND score = 5);

name | start_year

−−−−−−−−+−−−−−−−−−−−−

Victor | 2014

(1 rows)

50

iv

For more details, see the documentation: postgrespro.com/

doc/functions-subquery.

In the examples above, we appended table names to column

names to avoid ambiguity, but it is not always sufficient. For

example, the same table can be used in the query twice, or

the FROM clause can contain a nameless subquery instead

of a table name. In such cases, you can specify an arbitrary

name after the query, which is called an alias. Regular tables

can also be assigned an alias.

Let’s display student names and their scores for the “Data-

bases” course:

test=# SELECT s.name, ce.score

FROM students s

JOIN (SELECT exams.*

FROM courses, exams

WHERE courses.c_no = exams.c_no

AND courses.title = 'Databases') ce

ON s.s_id = ce.s_id;

name | score

−−−−−−+−−−−−−−

Anna | 5

Nina | 5

(2 rows)

Here “s” is a table alias, while “ce” is a subquery alias. You

should choose an alias that is short but comprehensive.

The same query can also be written without subqueries:

test=# SELECT s.name, e.score

FROM students s, courses c, exams e

WHERE c.c_no = e.c_no

AND c.title = 'Databases'

AND s.s_id = e.s_id;

https://postgrespro.com/doc/functions-subquery
https://postgrespro.com/doc/functions-subquery

51

iv

Sorting

As we already know, table data is not sorted. To return the

rows in a particular order, we can use the ORDER BY clause

with the list of sorting expressions. After each expression

(sorting key), you can specify the sort direction: ASC for as-

cending (used by default), DESC for descending.

test=# SELECT * FROM exams

ORDER BY score, s_id, c_no DESC;

s_id | c_no | score

−−−−−−+−−−−−−−+−−−−−−−

1432 | CS305 | 4

1451 | CS305 | 5

1451 | CS301 | 5

1556 | CS301 | 5

(4 rows)

Here the rows are first sorted by the score, in ascending order.

For the same scores, the rows are further sorted by the stu-

dent ID card number, also in ascending order. If the first two

keys are the same, rows are additionally sorted by the course

number, in descending order.

It makes sense to sort data at the end of the query, right

before returning the result; this operation is usually unnec-

essary in subqueries.

For more details, see the documentation: postgrespro.com/

doc/sql-select#SQL-ORDERBY.

Grouping

When grouping is used, the query returns summary data

calculated from multiple rows stored in the original tables.

https://postgrespro.com/doc/sql-select#SQL-ORDERBY
https://postgrespro.com/doc/sql-select#SQL-ORDERBY

52

iv

Grouping typically involves aggregate functions. For exam-

ple, this is how we can display the total number of exams

taken, the number of students who passed the exams, and

the average score:

test=# SELECT count(*), count(DISTINCT s_id),

avg(score)

FROM exams;

count | count | avg

−−−−−−−+−−−−−−−+−−−−−−−−−−−−−−−−−−−−

4 | 3 | 4.7500000000000000

(1 row)

You can get similar information by the course number if you

provide the GROUP BY clause with grouping keys:

test=# SELECT c_no, count(*),

count(DISTINCT s_id), avg(score)

FROM exams

GROUP BY c_no;

c_no | count | count | avg

−−−−−−−+−−−−−−−+−−−−−−−+−−−−−−−−−−−−−−−−−−−−

CS301 | 2 | 2 | 5.0000000000000000

CS305 | 2 | 2 | 4.5000000000000000

(2 rows)

For the full list of aggregate functions, see postgrespro.com/

doc/functions-aggregate.

In queries that use grouping, you may need to filter the rows

based on the aggregation results. You can define such con-

ditions in the HAVING clause. While the WHERE conditions are

applied before grouping (and can use the columns of the orig-

inal tables), the HAVING conditions take effect after grouping

(so they can also use the columns of the resulting table).

Let’s select the names of the students who got more than

one excellent score (5), in any course:

https://postgrespro.com/doc/functions-aggregate
https://postgrespro.com/doc/functions-aggregate

53

iv

test=# SELECT students.name

FROM students, exams

WHERE students.s_id = exams.s_id AND exams.score = 5

GROUP BY students.name

HAVING count(*) > 1;

name

−−−−−−

Anna

(1 row)

For more details, see the documentation: postgrespro.ru/

doc/sql-select#SQL-GROUPBY.

Changing and Deleting Data

To modify data in a table, you should use the UPDATE opera-

tor, which provides new field values for rows defined by the

WHERE clause (similar to the SELECT operator).

For example, let’s double the number of lecture hours for the

“Databases” course:

test=# UPDATE courses

SET hours = hours * 2

WHERE c_no = 'CS301';

UPDATE 1

For more details, see the documentation: postgrespro.com/

doc/sql-update.

Similarly, the DELETE operator deletes the rows defined by

the WHERE clause:

test=# DELETE FROM exams WHERE score < 5;

DELETE 1

https://postgrespro.ru/doc/sql-select#SQL-GROUPBY
https://postgrespro.ru/doc/sql-select#SQL-GROUPBY
https://postgrespro.com/doc/sql-update
https://postgrespro.com/doc/sql-update

54

iv

Transactions

Let’s extend our database schema a little bit and distribute

our students between groups. Each group must have a moni-

tor (a student of the same group responsible for the students’

activities). For this purpose, let’s create the groups table:

test=# CREATE TABLE groups(

g_no text PRIMARY KEY,

monitor integer NOT NULL REFERENCES students(s_id)

);

CREATE TABLE

Here we have applied the NOT NULL constraint, which forbids

using undefined values.

Now we need another column in the students table: the

group number. Luckily, we can add a new column into the

already existing table:

test=# ALTER TABLE students

ADD g_no text REFERENCES groups(g_no);

ALTER TABLE

Using the psql command, you can always check which

columns are defined in the table:

test=# \d students

Table "public.students"

Column | Type | Modifiers

−−−−−−−−−−−−+−−−−−−−−−+−−−−−−−−−−

s_id | integer | not null

name | text |

start_year | integer |

g_no | text |

...

55

iv

You can also get the list of all the tables available in the

database:

test=# \d

List of relations

Schema | Name | Type | Owner

−−−−−−−−+−−−−−−−−−−+−−−−−−−+−−−−−−−−−−

public | courses | table | postgres

public | exams | table | postgres

public | groups | table | postgres

public | students | table | postgres

(4 rows)

Now let’s create a new group called “A-101,” move all the stu-

dents into this group, and make Anna its monitor.

Note the following subtle point. We cannot create a group

without a monitor, but neither can a student become the

monitor of the group unless they are already a member of

this group—it would make our data logically incorrect and

inconsistent. Taken separately, these two operationsmake no

sense: theymust be performed simultaneously. A transaction

is a group of operations that form an indivisible logical unit

of work.

So let’s start our transaction:

test=# BEGIN;

BEGIN

Next, we need to add a new group, together with its monitor.

Naturally, we cannot remember all the students’ ID, so we’ll

use the following query right inside the command that adds

new rows:

56

iv

test=*# INSERT INTO groups(g_no, monitor)

SELECT 'A-101', s_id

FROM students

WHERE name = 'Anna';

INSERT 0 1

The asterisk in the prompt reminds us that the transaction is

not yet completed.

Now let’s open a new terminal window and launch another

psql process: this session will be running in parallel with the

first one. To avoid confusion, we will indent the commands

of the second session.

Will the second session see the changes made in the first

session?

postgres=# \c test

You are now connected to database "test" as user

"postgres".

test=# SELECT * FROM groups;

g_no | monitor

−−−−−−+−−−−−−−−−

(0 rows)

No, since the transaction is not yet completed.

To continue with our transaction, let’s move all students to

the newly created group:

test=*# UPDATE students SET g_no = 'A-101';

UPDATE 3

The second session still gets consistent data, which was al-

ready present in the database when the uncommitted trans-

action was started.

57

iv

test=# SELECT * FROM students;

s_id | name | start_year | g_no

−−−−−−+−−−−−−−−+−−−−−−−−−−−−+−−−−−−

1451 | Anna | 2014 |

1432 | Victor | 2014 |

1556 | Nina | 2015 |

(3 rows)

Let’s commit all our changes to complete the transaction:

test=*# COMMIT;

COMMIT

Finally, the second session receives all the changes made by

this transaction, as if they appeared all at once:

test=# SELECT * FROM groups;

g_no | monitor

−−−−−−−+−−−−−−−−−

A-101 | 1451

(1 row)

test=# SELECT * FROM students;

s_id | name | start_year | g_no

−−−−−−+−−−−−−−−+−−−−−−−−−−−−+−−−−−−−

1451 | Anna | 2014 | A-101

1432 | Victor | 2014 | A-101

1556 | Nina | 2015 | A-101

(3 rows)

It is guaranteed that several important properties of the data-

base system are always observed.

First of all, any transaction is executed either completely (like

in the example above), or not at all. If at least one of the com-

58

iv

mands results in an error, or we have aborted the transaction

with the ROLLBACK command, the database stays in the same

state as before the BEGIN command. This property is called

atomicity.

Second, when a transaction is committed, all integrity con-

straints must hold true, otherwise the transaction has to be

aborted. The data is consistent when the transaction starts,

and it remains consistent at the end of the transaction, which

gives this property its name: consistency.

Third, as the example has shown, other users will never see

inconsistent data not yet committed by the transaction. This

property is called isolation. Thanks to this property, the data-

base system can serve multiple sessions in parallel, without

sacrificing data consistency.

PostgreSQL is known for a very efficient implementation of

isolation: several sessions can perform reads and writes in

parallel, without blocking each other. Blocking occurs only if

two different processes try changing the same row simulta-

neously.

And finally, durability is guaranteed: the committed data is

never lost even in case of a failure (if the database is set up

correctly and is regularly backed up, of course).

These properties are extremely important; it is impossible to

imagine a relational database management system without

them.

To learn more about transactions, see postgrespro.com/doc/

tutorial-transactions (Even more details are available here:

postgrespro.com/doc/mvcc).

https://postgrespro.com/doc/tutorial-transactions
https://postgrespro.com/doc/tutorial-transactions
https://postgrespro.com/doc/mvcc

59

iv

Useful psql Commands

\? Command-line reference for psql.

\h SQL Reference: the list of available commands

or the syntax of a particular command.

\x A switch that toggles between the regular table

display (rows and columns) and an extended dis-

play (with each column printed on a separate

line). This is useful for viewing several wide

rows.

\l List of databases.

\du List of users.

\dt List of tables.

\di List of indexes.

\dv List of views.

\df List of functions.

\dn List of schemas.

\dx List of installed extensions.

\dp List of privileges.

\d name Detailed information about the specified ob-

ject.

\d+ name Extended detailed information about the speci-

fied object.

\timing on Displays operator execution time.

60

iv

Conclusion

We have covered only a small portion of what you need to

know about PostgreSQL, but we hope you have found it easy

to get started. The SQL language enables you to construct

queries of various complexity, while PostgreSQL provides an

effective implementation and high-quality support of the

standard. Try it yourself and experiment!

And one more important psql command. To end the session,

enter:

test=# \q

V Demo Database

About the Demo Database

Overview

To get to grips with more complex queries, we need to create

a more substantial database (with not just three but eight

tables) and fill it up with some reasonable data.

We have chosen airline flights as the subject area. Our data-

base contains statistics on all flights operated by a hypotheti-

cal airline within a specific timeframe. These scenarios must

be familiar to anyone who has ever traveled by plane, but

we’ll explain everything anyway.

The database schema is shown on p. 63. We aimed for a bal-

ance: keeping the database schema simple without unneces-

sary complexity, yet detailed enough to support interesting

and meaningful queries.

The main entity in our schema is a booking (mapped to

the bookings table). Each booking can include several pas-

sengers, with a separate ticket issued for each passenger

(tickets). We do not have any reliable unique ID for a pas-

senger as a person (who might have flown with our airline

multiple times), so the passenger does not constitute a sep-

arate entity. We will assume that all the passengers are

unique.

62

v

Each ticket always contains one or more flight segments

(ticket_flights). A single ticket can include multiple seg-

ments if there are no direct flights between the departure

and arrival airports or if it is a round-trip ticket.

It is assumed that all tickets in a single booking have the

same flight segments, even though there is no such con-

straint in the schema.

Each flight (flights) goes from one airport (airports) to an-

other. Flights with the same flight number have the same

points of departure and destination but different departure

dates.

At flight check-in, each passenger is issued a boarding pass

(boarding_passes), where the seat number is specified. Pas-

sengers can check in for the flight only if they have a ticket

for this flight. The flight/seat combination must be unique

to avoid issuing several boarding passes for the same seat.

The number of seats in the aircraft and their distribution be-

tween different travel classes depend on the specific model

of the aircraft performing the flight. It is assumed that each

aircraft model has only one cabin configuration. The data-

base schema does not include any checks on whether the

seat specified in the boarding pass is actually available in

the particular aircraft.

In the sections that follow, we’ll describe each of the tables,

as well as additional views and functions. You can always

use the \d+ command to get the exact definition of any table,

including data types and column descriptions.

63

v

Bo
ok
in
gs

#
b
o
o
k_
re
f

∗
b
o
o
k_
d
at
e

∗
to
ta
l_
am

o
u
n
t

A
ir
po
rt
s

#
ai
rp
o
rt
_c
o
d
e

∗
ai
rp
o
rt
_n
am

e
∗
ci
ty

∗
co
o
rd
in
at
es

∗
ti
m
ez
o
n
e

Ti
ck
et
s

#
ti
ck
et
_n
o

∗
b
o
o
k_
re
f

∗
p
as
se
n
g
er
_i
d

∗
p
as
se
n
g
er
_n
am

e
◦
co
n
ta
ct
_d
at
a

Ti
ck
et
_fl
ig
ht
s

#
ti
ck
et
_n
o

#
fl
ig
h
t_
id

∗
fa
re
_c
o
n
d
it
io
n
s

∗
am

o
u
n
t

Fl
ig
ht
s

#
fl
ig
h
t_
id

∗
fl
ig
h
t_
n
o

∗
sc
h
ed
u
le
d
_d
ep
ar
tu
re

∗
sc
h
ed
u
le
d
_a
rr
iv
al

∗
d
ep
ar
tu
re
_a
ir
p
o
rt

∗
ar
ri
va
l_
ai
rp
o
rt

∗
st
at
u
s

∗
ai
rc
ra
ft
_c
o
d
e

◦
ac
tu
al
_d
ep
ar
tu
re

◦
ac
tu
al
_a
rr
iv
al

A
ir
cr
af
ts

#
ai
rc
ra
ft
_c
o
d
e

∗
m
o
d
el

∗
ra
n
g
e

Bo
ar
di
ng
_p
as
se
s

#
ti
ck
et
_n
o

#
fl
ig
h
t_
id

∗
b
o
ar
d
in
g
_n
o

∗
se
at
_n
o

Se
at
s

#
ai
rc
ra
ft
_c
o
d
e

#
se
at
_n
o

∗
fa
re
_c
o
n
d
it
io
n
s

1

64

v

k

65

v

Bookings

Passengers must book their tickets in advance. The booking

date (book_date) must bewithin onemonth of the flight. The

booking is identified by its number (book_ref, a six-position

combination of letters and digits).

The total_amount field stores the total price of all tickets

included into the booking, for all passengers.

Tickets

A ticket has a unique number (ticket_no), which consists of

13 digits.

The ticket contains the number of the passenger’s identity

document (passenger_id), as well as the passenger’s first

and last names (passenger_name) and contact information

(contact_data).

Since a passenger’s ID or name may change (e.g., due to a

name change or passport renewal), uniquely identifying all

tickets belonging to a single passenger is not always possi-

ble. For simplicity, let’s assume that all the passengers are

unique.

Flight Segments

A flight segment links a ticket to a flight and is identified by

both the ticket number and the flight number.

Each flight segment has its price (amount) and travel class

(fare_conditions).

66

v

Flights

A unique ID can be either natural (if it is related to real-life

objects) or surrogate (if it is generated by the system, typically

as an increasing sequence of numbers).

The natural composite key of the flights table consists of

the flight number (flight_no) and the date of the departure

(scheduled_departure). To make foreign keys that refer to

this table a bit shorter, a surrogate key flight_id is used as

the primary key.

Each flight departs from one airport (departure_airport)

and arrives at another (arrival_airport).

There is no such entity as a “connecting flight”: if there are no

direct flights from one airport to another, the ticket simply

includes all the required flight segments.

Each flight has a scheduled date and time of departure and ar-

rival (scheduled_departure and scheduled_arrival). How-

ever, actual departure and arrival times (actual_departure

and actual_arrival) may varydue to delays, which can range

from a few minutes to several hours.

Flight status can take one of the following values:

• Scheduled

The flight can be booked. This value is set one month

before the planned departure date; at this point, the in-

formation about the flight is entered into the database.

• On Time

The flight is open for check-in (twenty-four hours before

the scheduled departure) and is not delayed.

67

v

• Delayed

The flight is open for check-in (twenty-four hours before

the scheduled departure), but is delayed.

• Departed

The aircraft has already departed and is airborne.

• Arrived

The aircraft has reached the point of destination.

• Cancelled

The flight is cancelled.

Airports

An airport is identified by a three-letter airport_code and

has an airport_name.

There is no separate entity for the city; a city name is simply

an airport attribute, which is required to identify all the air-

ports of the same city. The table also includes coordinates

(longitude and latitude) and the timezone.

Boarding Passes

At the time of check-in, which opens twenty-four hours before

the scheduled departure, the passenger is issued a boarding

pass. Each boarding pass is uniquely identified by a combi-

nation of ticket and flight numbers.

Boarding pass numbers (boarding_no) are assigned sequen-

tially based on check-in order. They are unique only within a

specific flight. The boarding pass specifies the seat number

(seat_no).

68

v

Aircraft

Each aircraft model is identified by a three-character

aircraft_code. The table also includes the name of the air-

craft model and the maximum flying distance, in kilometers

(range).

Seats

Seats define the cabin configuration of each aircraft model.

Each seat has a number (seat_no) and an assigned travel

class (fare_conditions): Economy, Comfort, or Business.

Flights View

There is a flights_v view built over the flights table. Views

can be queried in the same way as tables, but they do not

store any data: they simply perform a particular query. The

following psql command displays the definition of the view

and its query:

postgres=# \d+ flights_v

This view adds the following information:

• details about the airport of departure

departure_airport, departure_airport_name,

departure_city

• details about the airport of arrival

arrival_airport, arrival_airport_name,

arrival_city

• local departure time

scheduled_departure_local, actual_departure_local

69

v

• local arrival time

scheduled_arrival_local, actual_arrival_local

• flight duration

scheduled_duration, actual_duration

Routes View

The flights table contains some redundancies, which you

can use to get route information that does not depend on

the exact flight dates (flight number, airports of departure

and destination, aircraft model).

This information constitutes the routes view. Besides, this

view shows the days_of_week array representing days of the

week on which flights are performed, and the planned flight

duration.

The “now” Function

The demo database contains a snapshot of data, similar to a

backup of a real system captured at some point in time. For

example, if a flight has the Departed status, it means that the

aircraft was airborne at the time the backup was taken.

The snapshot time is saved in the bookings.now function.

You can use this function in demo queries for cases that

would typically require calling the now function.

Besides, the return value of this function determines the ver-

sion of the demo database. The latest version, as of August

15, 2017, contains data from that date.

70

v

Installation

Installation from the Website

The demo database is available in three flavors, which differ

only in the data size:

• edu.postgrespro.com/demo-small-en.zip

A small database with flight data for one month (21 MB,

DB size is 280 MB).

• edu.postgrespro.com/demo-medium-en.zip

A medium database with flight data for three months

(62 MB, DB size is 702 MB).

• edu.postgrespro.com/demo-big-en.zip

A large database with flight data for one year

(232 MB, DB size is 2638 MB).

A small database is quite suitable for learning how to write

queries, but if you would like to deal with query optimization

specifics, choose the large database: then you’ll be able to

see how queries work on large volumes of data.

The files contain a logical backup of the demo database cre-

ated with the pg_dump utility. Note that if you already have

some database named demo, it will be dropped and restored

from this backup. The user who runs the script becomes the

owner of this database.

To install the demo database on a Linux system, switch to the

postgres user and download the corresponding file. For ex-

ample, to download the small database, do the following:

$ sudo su - postgres

$ wget https://edu.postgrespro.com/demo-small-en.zip

https://edu.postgrespro.com/demo-small-en.zip
https://edu.postgrespro.com/demo-medium-en.zip
https://edu.postgrespro.com/demo-big-en.zip

71

v

Then run the following command:

$ zcat demo-small-en.zip | psql

On Windows, download the edu.postgrespro.com/demo-

small-en.zip file, double-click it to open the archive, and copy

the demo-small-en-20170815.sql file into the C:\Program

Files\PostgreSQL\17 directory.

The pgAdmin application (described on p. 111) does not sup-

port restoring databases from this type of backup. So you

should start psql (by clicking the “SQL Shell (psql)” shortcut)

and run the following command:

postgres# \i demo-small-en-20170815.sql

If the file is not found, check the “Start in” property of the

shortcut; the file must be located in this directory.

Sample Queries

A Couple of Words about the Schema

Once installation is complete, launch psql and connect to

the demo database:

postgres=# \c demo

You are now connected to database "demo" as user

"postgres".

The bookings schema contains all necessary entities. When

connected to the database, this schema is used automatically,

so there is no need to specify it explicitly:

https://edu.postgrespro.com/demo-small-en.zip
https://edu.postgrespro.com/demo-small-en.zip

72

v

demo=# SELECT * FROM aircrafts;

aircraft_code | model | range

−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−+−−−−−−−

773 | Boeing 777-300 | 11100

763 | Boeing 767-300 | 7900

SU9 | Sukhoi Superjet-100 | 3000

320 | Airbus A320-200 | 5700

321 | Airbus A321-200 | 5600

319 | Airbus A319-100 | 6700

733 | Boeing 737-300 | 4200

CN1 | Cessna 208 Caravan | 1200

CR2 | Bombardier CRJ-200 | 2700

(9 rows)

However, we must specify the schema for the bookings.now

function, as we have to differentiate it from the standard now

function:

demo=# SELECT bookings.now();

now

−−−−−−−−−−−−−−−−−−−−−−−−

2017-08-15 18:00:00+03

(1 row)

The following query returns cities and airports:

demo=# SELECT airport_code, city

FROM airports LIMIT 4;

airport_code | city

−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−

YKS | Yakutsk

MJZ | Mirnyj

KHV | Khabarovsk

PKC | Petropavlovsk

(4 rows)

73

v

The contents of the database is provided in English and in

Russian. You can switch between these languages by setting

the bookings.lang parameter to en or ru, respectively. By

default, the English language is selected. You can change

this setting as follows:

demo=# ALTER DATABASE demo SET bookings.lang = ru;

ALTER DATABASE

The language has been changed at the database level; now

we have to reconnect to the database.

demo=# \c

You are now connected to database "demo" as user

"postgres".

demo=# SELECT airport_code, city

FROM airports LIMIT 4;

airport_code | city

−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−

YKS | Якутск

MJZ | Мирный

KHV | Хабаровск

PKC | Петропавловск-Камчатский

(4 rows)

To understand how it works, take a look at the aircrafts or

airports definition using the \d+ psql command.

If you want to learn more about managing schemas, see the

documentation: postgrespro.com/doc/ddl-schemas.

For more details on setting configuration parameters, see

postgrespro.com/doc/config-setting.

https://postgrespro.com/doc/ddl-schemas
https://postgrespro.com/doc/config-setting

74

v

Simple Queries

Let’s use this schema to discuss several problems, starting

from the simplest questions and getting to more complex

ones. Most problems are followed by a solution, but if you

want to learn SQL effectively, try to write your own query be-

fore looking at the answer.

Problem. Who traveled from Moscow (SVO) to Novosibirsk

(OVB) on seat 1A the day before yesterday, and when was the

ticket booked?

Solution. “The day before yesterday” is counted from the

booking.now value, not from the current date.

SELECT t.passenger_name,

b.book_date

FROM bookings b

JOIN tickets t

ON t.book_ref = b.book_ref

JOIN boarding_passes bp

ON bp.ticket_no = t.ticket_no

JOIN flights f

ON f.flight_id = bp.flight_id

WHERE f.departure_airport = 'SVO'

AND f.arrival_airport = 'OVB'

AND f.scheduled_departure::date =

bookings.now()::date - interval '2 day'

AND bp.seat_no = '1A';

Problem. Howmany seats were unoccupied on flight PG0404

yesterday?

Solution. There are several approaches to solving this prob-

lem. One of the options is to use the NOT EXISTS expression

to find the seats without boarding passes:

75

v

SELECT count(*)

FROM flights f

JOIN seats s

ON s.aircraft_code = f.aircraft_code

WHERE f.flight_no = 'PG0404'

AND f.scheduled_departure::date =

bookings.now()::date - interval '1 day'

AND NOT EXISTS (

SELECT NULL

FROM boarding_passes bp

WHERE bp.flight_id = f.flight_id

AND bp.seat_no = s.seat_no

);

Another approach uses set subtraction to find the unoccu-

pied seats. Different solutions give the same result but may

sometimes differ in performance, so you have to take it into

account if it matters.

SELECT count(*) FROM

(

SELECT s.seat_no

FROM seats s

WHERE s.aircraft_code = (

SELECT aircraft_code FROM flights

WHERE flight_no = 'PG0404'

AND scheduled_departure::date =

bookings.now()::date - interval '1 day'

)

EXCEPT

SELECT bp.seat_no

FROM boarding_passes bp

WHERE bp.flight_id = (

SELECT flight_id FROM flights

WHERE flight_no = 'PG0404'

AND scheduled_departure::date =

bookings.now()::date - interval '1 day'

)

) t;

76

v

Problem. Which flights had the longest delays? Print the list

of ten “leaders.”

Solution. The query needs to include only those flights that

have already departed.

SELECT f.flight_no,

f.scheduled_departure,

f.actual_departure,

f.actual_departure - f.scheduled_departure

AS delay

FROM flights f

WHERE f.actual_departure IS NOT NULL

ORDER BY f.actual_departure - f.scheduled_departure

DESC

LIMIT 10;

You can define the same condition using the status column

by listing all the applicable statuses. Or you can skip the

WHERE condition altogether by specifying the DESC NULLS

LAST sorting order, so that undefined values are returned at

the end of the selection.

Aggregate Functions

Problem. What is the shortest flight duration for each possi-

ble flight fromMoscow to St. Petersburg, and howmany times

was the flight delayed for more than an hour?

Solution. To solve this problem, it is convenient to use the

available flights_v view instead of dealing with table joins.

You need to take into account only those flights that have

already arrived.

77

v

SELECT f.flight_no,

f.scheduled_duration,

min(f.actual_duration),

max(f.actual_duration),

sum(CASE WHEN f.actual_departure >

f.scheduled_departure +

interval '1 hour'

THEN 1 ELSE 0

END) delays

FROM flights_v f

WHERE f.departure_city = 'Moscow'

AND f.arrival_city = 'St. Petersburg'

AND f.status = 'Arrived'

GROUP BY f.flight_no,

f.scheduled_duration;

Problem. Identify the passengers who were the first to check

in for all their flights. Consider only those who have taken at

least two flights.

Solution. Use the fact that boarding pass numbers are issued

in the check-in order.

SELECT t.passenger_name,

t.ticket_no

FROM tickets t

JOIN boarding_passes bp

ON bp.ticket_no = t.ticket_no

GROUP BY t.passenger_name,

t.ticket_no

HAVING max(bp.boarding_no) = 1

AND count(*) > 1;

Problem. Howmany passengers can be included into a single

booking?

Solution. Let’s count the number of passengers in each book-

ing and then find the number of bookings for each number

of passengers.

78

v

SELECT tt.cnt,

count(*)

FROM (

SELECT t.book_ref,

count(*) cnt

FROM tickets t

GROUP BY t.book_ref

) tt

GROUP BY tt.cnt

ORDER BY tt.cnt;

Window Functions

Problem. For each ticket, display all the included flight seg-

ments, together with connection time. Limit the result to the

tickets booked a week ago.

Solution. Use window functions to avoid accessing the same

data twice.

SELECT tf.ticket_no,

f.departure_airport,

f.arrival_airport,

f.scheduled_arrival,

lead(f.scheduled_departure) OVER w

AS next_departure,

lead(f.scheduled_departure) OVER w -

f.scheduled_arrival AS gap

FROM bookings b

JOIN tickets t

ON t.book_ref = b.book_ref

JOIN ticket_flights tf

ON tf.ticket_no = t.ticket_no

JOIN flights f

ON tf.flight_id = f.flight_id

WHERE b.book_date =

bookings.now()::date - interval '7 day'

WINDOW w AS (PARTITION BY tf.ticket_no

ORDER BY f.scheduled_departure);

79

v

As you can see, the time cushion between flights can reach

up to several days: round-trip tickets and one-way tickets

are treated in the same way, and the time of the stay in the

point of destination is treated just like the time between con-

necting flights. Using the solution for one of the problems in

the “Arrays” section, you can take this fact into account when

building the query.

Problem. What are the most frequent combinations of first

and last names? What is the ratio of the passengers with

such names to the total number of passengers?

Solution. The total number of passengers is calculated using

a window function.

SELECT passenger_name,

round(100.0 * cnt / sum(cnt) OVER (), 2)

AS percent

FROM (

SELECT passenger_name,

count(*) cnt

FROM tickets

GROUP BY passenger_name

) t

ORDER BY percent DESC;

Problem. Solve the previous problem for first names and last

names separately.

Solution. Let’s take a look at how to count first names. The

query for counting last names will differ only by the p sub-

query.

As this complex query shows, you should avoid using a single

text field for different values if you are going to use them

separately; in scientific terms, it is called the first normal

form.

80

v

WITH p AS (

SELECT left(passenger_name,

position(' ' IN passenger_name))

AS passenger_name

FROM tickets

)

SELECT passenger_name,

round(100.0 * cnt / sum(cnt) OVER (), 2)

AS percent

FROM (

SELECT passenger_name,

count(*) cnt

FROM p

GROUP BY passenger_name

) t

ORDER BY percent DESC;

Arrays

Problem. The database does not explicitly indicate whether

the ticket is one-way or round-trip. However, you can figure it

out by comparing the first point of departure to the last point

of destination. Display airports of departure and destination

for each ticket, ignoring connections, and specify whether it’s

a round-trip ticket or not.

Solution. An easy solution is to use the array_agg function

to transform the list of airports in the itinerary into an array.

We select the middle element of the array as the airport of

destination, assuming that the outbound and inbound ways

have the same number of stops.

In this example, the tickets table is scanned only once. The

array of airports is displayed for clarity; for large volumes of

data, it makes sense to remove it from the query since extra

data can hamper performance.

81

v

WITH t AS (

SELECT ticket_no,

a,

a[1] departure,

a[cardinality(a)] last_arrival,

a[cardinality(a)/2+1] middle

FROM (

SELECT t.ticket_no,

array_agg(f.departure_airport

ORDER BY f.scheduled_departure) ||

(array_agg(f.arrival_airport

ORDER BY f.scheduled_departure DESC)

)[1] AS a

FROM tickets t

JOIN ticket_flights tf

ON tf.ticket_no = t.ticket_no

JOIN flights f

ON f.flight_id = tf.flight_id

GROUP BY t.ticket_no

) t

)

SELECT t.ticket_no,

t.a,

t.departure,

CASE

WHEN t.departure = t.last_arrival

THEN t.middle

ELSE t.last_arrival

END arrival,

(t.departure = t.last_arrival) return_ticket

FROM t;

Problem. Find the round-trip tickets in which the outbound

route differs from the inbound one.

Problem. Find pairs of airports with inbound and outbound

flights departing on different days of the week.

Solution. The part of the problem that involves building an

array of days of the week is virtually solved in the routes

82

v

view. You only have to find the intersection of arrays using

the && operator and make sure it’s empty.

SELECT r1.departure_airport,

r1.arrival_airport,

r1.days_of_week dow,

r2.days_of_week dow_back

FROM routes r1

JOIN routes r2

ON r1.arrival_airport = r2.departure_airport

AND r1.departure_airport = r2.arrival_airport

WHERE NOT (r1.days_of_week && r2.days_of_week);

Recursive Queries

Problem. How can you get from Ust-Kut (UKX) to Neryungri

(CNN) with the minimal number of connections? What will

the flight time be?

Solution. This problem requires finding the shortest path in a

graph. We will use a recursive query to complete this task.

A detailed step-by-step explanation of this query is published

at habr.com/en/company/postgrespro/blog/490228/. Below

is a brief summary.

Infinite looping is prevented by checking the hops array,

which is built while the query is being executed.

Since the query performs a breadth-first search, the first path

found will have the fewest connections. To avoid looping

through other paths (that can be numerous and are definitely

longer than the already found one), the found attribute is

used. It is calculated using the bool_or window function.

https://habr.com/en/company/postgrespro/blog/490228/

83

v

WITH RECURSIVE p(

last_arrival, destination, hops,

flights, flight_time, found

) AS (

SELECT a_from.airport_code,

a_to.airport_code,

array[a_from.airport_code],

array[]::char(6)[],

interval '0',

a_from.airport_code = a_to.airport_code

FROM airports a_from,

airports a_to

WHERE a_from.airport_code = 'UKX'

AND a_to.airport_code = 'CNN'

UNION ALL

SELECT r.arrival_airport,

p.destination,

(p.hops || r.arrival_airport)::char(3)[],

(p.flights || r.flight_no)::char(6)[],

p.flight_time + r.duration,

bool_or(r.arrival_airport = p.destination)

OVER ()

FROM p JOIN routes r

ON r.departure_airport = p.last_arrival

WHERE NOT r.arrival_airport = ANY(p.hops)

AND NOT p.found

)

SELECT hops, flights, flight_time

FROM p

WHERE p.last_arrival = p.destination;

It is useful to compare this query with its simpler variant

without the found trick.

To learn more about recursive queries, see the documenta-

tion: postgrespro.com/doc/queries-with.

Problem. What is the maximum number of connections that

can be required to get from any airport to any other airport?

https://postgrespro.com/doc/queries-with

84

v

Solution. We can take the previous query as the basis for the

solution. However, the first iterationmust now contain all the

possible airport pairs, not just a single pair: each airportmust

be connected to all the other airports. For all these pairs of

airports we first find the shortest path, and then select the

longest of them.

Clearly, it is only possible if the routes graph is connected,

but our demo database satisfies this condition.

WITH RECURSIVE p(

departure, last_arrival,

destination, hops, found

) AS (

SELECT a_from.airport_code,

a_from.airport_code,

a_to.airport_code,

array[a_from.airport_code],

a_from.airport_code = a_to.airport_code

FROM airports a_from,

airports a_to

UNION ALL

SELECT p.departure,

r.arrival_airport,

p.destination,

(p.hops || r.arrival_airport)::char(3)[],

bool_or(r.arrival_airport = p.destination)

OVER (PARTITION BY p.departure,

p.destination)

FROM p JOIN routes r

ON r.departure_airport = p.last_arrival

WHERE NOT r.arrival_airport = ANY(p.hops)

AND NOT p.found

)

SELECT max(cardinality(hops)-1)

FROM p

WHERE p.last_arrival = p.destination;

This query also uses the found attribute, but here it should

be calculated separately for each pair of airports.

85

v

Problem. Find the shortest route from Ust-Kut (UKX) to

Neryungri (CNN) from the flight time perspective (ignoring

connection time).

Solution. To avoid infinite looping, we use the CYCLE clause

introduced in PostgreSQL 14.

WITH RECURSIVE p(

last_arrival, destination,

flights, flight_time,

min_time

) AS (

SELECT a_from.airport_code,

a_to.airport_code,

array[]::char(6)[],

interval '0',

NULL::interval

FROM airports a_from,

airports a_to

WHERE a_from.airport_code = 'UKX'

AND a_to.airport_code = 'CNN'

UNION ALL

SELECT r.arrival_airport,

p.destination,

(p.flights || r.flight_no)::char(6)[],

p.flight_time + r.duration,

least(

p.min_time, min(p.flight_time+r.duration)

FILTER (

WHERE r.arrival_airport = p.destination

) OVER ()

)

FROM p

JOIN routes r

ON r.departure_airport = p.last_arrival

WHERE p.flight_time + r.duration <

coalesce(p.min_time, interval '1 year')

)

CYCLE last_arrival SET is_cycle USING hops

86

v

SELECT hops,

flights,

flight_time

FROM (

SELECT hops,

flights,

flight_time,

min(min_time) OVER () min_time

FROM p

WHERE p.last_arrival = p.destination

) t

WHERE flight_time = min_time;

Note that the found route may be suboptimal with regards

to the number of connections.

Functions and Extensions

Problem. Find the distance between Kaliningrad (KGD) and

Petropavlovsk-Kamchatsky (PKC).

Solution. The airports table contains airport coordinates.

To accurately calculate the distance between two points, the

Earth’s curvature must be considered. This task is best per-

formed by the PostGIS extension, which can approximate the

Earth surface as a geoid.

However, a simple spherical model is sufficient for this exam-

ple. Let’s use the earthdistance and then convert the result

from miles to kilometers.

CREATE EXTENSION IF NOT EXISTS cube;

CREATE EXTENSION IF NOT EXISTS earthdistance;

87

v

SELECT round(

(a_from.coordinates <@> a_to.coordinates) *

1.609344

)

FROM airports a_from,

airports a_to

WHERE a_from.airport_code = 'KGD'

AND a_to.airport_code = 'PKC';

Problem. Draw the graph of flights between all the airports.

VI PostgreSQL

for Applications

A Separate User

In the previous chapter, we showed how to connect to the

database server on behalf of the postgres user. This is the

only database user available right after the PostgreSQL in-

stallation. Since the postgres user is a superuser, it should

not be used to connect to the database from an application.

It is better to create a new user and make it the owner of

a separate database; then its rights will be limited to this

database.

postgres=# CREATE USER app PASSWORD 'p@ssw0rd';

CREATE ROLE

postgres=# CREATE DATABASE appdb OWNER app;

CREATE DATABASE

To learn about users and privileges, see: postgrespro.com/

doc/user-manag and postgrespro.com/doc/ddl-priv.

To connect to a new database and start working with it on

behalf of the newly created user, run:

postgres=# \c appdb app localhost 5432

https://postgrespro.com/doc/user-manag
https://postgrespro.com/doc/user-manag
https://postgrespro.com/doc/ddl-priv

90

vi

Password for user app: ***

You are now connected to database "appdb" as user

"app" on host "127.0.0.1" at port "5432".

appdb=>

This command takes four parameters, in the following order:

database name (appdb), username (app), node (localhost or

127.0.0.1), and port number (5432).

Note that the database name is not the only thing that has

changed in the prompt: instead of the hash symbol (#), the

greater than sign is displayed (>). The hash symbol indicates

the superuser rights, similar to the root user in Unix.

The app user has full privileges within the appdb database.

For example, this user can create a table:

appdb=> CREATE TABLE greeting(s text);

CREATE TABLE

appdb=> INSERT INTO greeting VALUES ('Hello, world!');

INSERT 0 1

Remote Connections

In our example, both the client and the database are located

on the same system. You can install PostgreSQL onto a sep-

arate server and connect to it from a different system (for

example, from an application server). In this case, you must

specify your database server address instead of localhost. But

it is not enough: for security reasons, PostgreSQL only allows

local connections by default.

91

vi

To connect to the database from the outside, you must edit

two files.

First of all, modify the postgresql.conf file, which contains

the main configuration settings. It is usually located in the

data directory.

Find the line defining network interfaces for PostgreSQL to

listen on:

#listen_addresses = 'localhost'

We have to replace it with:

listen_addresses = '*'

Next, edit the pg_hba.conf file with authentication settings.

When a client tries to connect to the server, PostgreSQL

searches this file for the first line that matches the connec-

tion by four parameters: connection type, database name,

username, and client IP address. This line also specifies how

the user must confirm their identity.

For example, on Debian and Ubuntu, this file includes the

following setting among others (the top line starting with

the hash symbol is a comment):

TYPE DATABASE USER ADDRESS METHOD

local all all peer

It means that local connections (local) to any database (all)

on behalf of any user (all) must be validated by the peer

authentication method (clearly, an IP address is not required

for local connections).

92

vi

The peer method means that PostgreSQL requests the cur-

rent username from the operating system and assumes that

the OS has already performed the required authentication

check (prompted for the password). This is why on Linux-like

operating systems users usually don’t have to enter the pass-

word when connecting to a local server.

But Windows does not support local connections, so this line

looks as follows:

TYPE DATABASE USER ADDRESS METHOD

host all all 127.0.0.1/32 md5

It means that network connections (host) to any database

(all) on behalf of any user (all) from the local address

(127.0.0.1) must be checked by the md5 method. This

method requires the user to enter the password.

To allow the app user to access the appdb database from any

address upon providing a valid password, add the following

line to the end of the pg_hba.conf file:

host appdb app all md5

After changing the configuration files, don’t forget to make

the server re-read the settings:

postgres=# SELECT pg_reload_conf();

To learn more details about authentication settings, see

postgrespro.com/doc/client-authentication.html

https://postgrespro.com/doc/client-authentication.html

93

vi

Pinging the Server

To access PostgreSQL from an application, you have to find an

appropriate library and install the corresponding database

driver. A driver is usually a wrapper for libpq (a standard

library that implements the client-server protocol for Post-

greSQL), but other implementations are also possible. The

library provides application developers with a convenient

way to access low-level features of the protocol.

The following sections contain simple code snippets in sev-

eral popular languages. These examples can help you quickly

check the connectionwith the database system that you have

installed and set up.

These code snippets are minimal examples and should not

be used in production; there is nothing else, not even error

handling functionality.

If you are using a Windows system, to ensure the correct dis-

play of extended character sets, you may need to switch to a

TrueType font (such as “Lucida Console” or “Consolas”) in the

Command Prompt window and change the code page. For

example, for the Russian language, run the following com-

mands:

C:\> chcp 1251

Active code page: 1251

C:\> set PGCLIENTENCODING=WIN1251

94

vi

PHP

PHP interacts with PostgreSQL via a special extension. On

Linux, apart from the PHP itself, you also have to install the

package with this extension:

$ sudo apt-get install php-cli php-pgsql

You can install PHP for Windows from the PHP website:

windows.php.net/download. The extension for PostgreSQL

is already included in the binary distribution, but you must

find and uncomment (by removing the semicolon) the follow-

ing line in the php.ini file:

;extension=php_pgsql.dll

A sample program (test.php):

<?php

$conn = pg_connect('host=localhost port=5432 ' .

'dbname=appdb user=app ' .

'password=p@ssw0rd') or die;

$query = pg_query('SELECT * FROM greeting') or die;

while ($row = pg_fetch_array($query)) {

echo $row[0].PHP_EOL;

}

pg_free_result($query);

pg_close($conn);

?>

Let’s execute this command:

$ php test.php

Hello, world!

You can read about this PostgreSQL extension in PHP docu-

mentation: php.net/manual/en/book.pgsql.php.

http://windows.php.net/download
http://php.net/manual/en/book.pgsql.php

95

vi

Perl

In the Perl language, database operations are implemented

via the DBI interface. On Debian and Ubuntu, Perl itself is

pre-installed, so you only need to install the driver:

$ sudo apt-get install libdbd-pg-perl

There are several Perl builds for Windows, which are listed

at perl.org/get.html. Popular builds such as ActiveState Perl

and Strawberry Perl come with the PostgreSQL driver pre-

installed.

A sample program (test.pl):

use DBI;

use open ':std', ':utf8';

my $conn = DBI->connect(

'dbi:Pg:dbname=appdb;host=localhost;port=5432',

'app','p@ssw0rd') or die;

my $query = $conn->prepare('SELECT * FROM greeting');

$query->execute() or die;

while (my @row = $query->fetchrow_array()) {

print @row[0]."\n";

}

$query->finish();

$conn->disconnect();

Let’s execute this command:

$ perl test.pl

Hello, world!

The interface is described in the documentation:

metacpan.org/pod/DBD::Pg.

http://perl.org/get.html
http://metacpan.org/pod/DBD::Pg

96

vi

Python

Python typically uses the psycopg library (pronounced as

“psycho-pee-gee”) to interact with PostgreSQL.

On modern versions of Debian and Ubuntu, Python 3 is pre-

installed, so you only need to add the corresponding driver:

$ sudo apt-get install python3-psycopg2

You can download Python for Windows from the python.org

website. The psycopg library is available at initd.org/psycopg

(choose the version that corresponds to the version of Python

installed). You can also find all the required documentation

there.

A sample program (test.py):

import psycopg2

conn = psycopg2.connect(

host='localhost', port='5432', database='appdb',

user='app', password='p@ssw0rd')

cur = conn.cursor()

cur.execute('SELECT * FROM greeting')

rows = cur.fetchall()

for row in rows:

print(row[0])

conn.close()

Let’s execute this command:

$ python3 test.py

Hello, world!

http://python.org
http://initd.org/psycopg

97

vi

Java

In Java, databases are accessed via the JDBC interface. Java

SE 11 is required along with a JDBC driver package.

$ sudo apt-get install openjdk-11-jdk

$ sudo apt-get install libpostgresql-jdbc-java

You can download JDK for Windows from oracle.com/

technetwork/java/javase/downloads. The JDBC driver is avail-

able at jdbc.postgresql.org (choose the version that corre-

sponds to the JDK installed on your system). You can also

find all the required documentation there.

Let’s consider a sample program (Test.java):

import java.sql.*;

public class Test {

public static void main(String[] args)

throws SQLException {

Connection conn = DriverManager.getConnection(

"jdbc:postgresql://localhost:5432/appdb",

"app", "p@ssw0rd");

Statement st = conn.createStatement();

ResultSet rs = st.executeQuery(

"SELECT * FROM greeting");

while (rs.next()) {

System.out.println(rs.getString(1));

}

rs.close();

st.close();

conn.close();

}

}

Compile and execute the program specifying the path to the

JDBC class driver (on Windows, paths are separated by semi-

colons, not colons):

http://oracle.com/technetwork/java/javase/downloads
http://oracle.com/technetwork/java/javase/downloads
http://jdbc.postgresql.org

98

vi

$ javac Test.java

$ java -cp .:/usr/share/java/postgresql-jdbc4.jar \

Test

Hello, world!

Backup

Although our database contains onlyone table, ensuring data

durability is still important. While your application has little

data, the easiest way to create a backup is to use the pg_dump

utility:

$ pg_dump appdb > appdb.dump

If you open the resulting appdb.dump file in a text editor, you

will see standard SQL commands that create all the appdb

objects and fill them with data. You can pass this file to psql

to restore the contents of the database. For example, you

can create a new database and import all the data into it:

$ createdb appdb2

$ psql -d appdb2 -f appdb.dump

This is the format in which the demo database described in

the previous chapter is distributed.

The pg_dump utility offers many features worth checking out:

postgrespro.com/doc/app-pgdump. Some of them are avail-

able only if the data is dumped in a custom format. In this

case, you have to use the pg_restore utility instead of psql

to restore the data.

https://postgrespro.com/doc/app-pgdump

99

vi

In any case, pg_dump can back up the contents of a single

database only. To make a backup of the whole cluster, includ-

ing all the databases, users, and tablespaces, you should use

a different command: pg_dumpall.

Large-scale projects require an elaborate and comprehensive

backup strategy. A better option here is a physical binary

copyof the cluster, which can be taken by the pg_basebackup

utility:

$ pg_basebackup -D backup

This command will create a backup of the whole database

cluster in the backup directory. To restore the cluster from

this backup, move it to the data directory and restart the

server.

To learn more about the available backup and recovery tools,

see the documentation: postgrespro.com/doc/backup.

Built-in PostgreSQL features enable you to implement almost

everything you need, but you have to complete multi-step

workflows that lack automation. That’s why many companies

create their own backup tools. Postgres Professional also

has such a tool called pg_probackup. The free version of the

tool enables you to perform incremental backups at the page

level, ensure data integrity, use parallel execution and com-

pression when working with big volumes of information, and

implement various backup strategies.

Its full documentation is available at postgrespro.com/doc/

app-pgprobackup.

https://postgrespro.com/doc/backup
https://postgrespro.com/doc/app-pgprobackup
https://postgrespro.com/doc/app-pgprobackup

100

vi

What’s next?

Now you are ready to develop your application. Regard-

ing the database, the application will always consist of two

parts: server and client. The server part comprises everything

that relates to the database system: tables, indexes, views,

triggers, stored functions and procedures. The client part

holds everything that works outside of the database and con-

nects to it; from the database point of view, it doesn’t matter

whether it’s a thick client or an application server.

An important question that has no clear-cut answer: where

should we place business logic?

One popular approach is to move the logic out of the data-

base and implement it all on the client. It often happens

when developers are unfamiliar with all the capabilities pro-

vided by a relational database system and prefer to rely on

what they know well, that is, on the application code.

In this case, the database becomes somewhat secondary to

the application and only ensures data persistence, its reli-

able storage. Database systems can be often isolated by an

additional abstraction level, such as an ORM tool that auto-

matically generates database queries from the constructs of

the programming language familiar to developers. Such so-

lutions are sometimes justified by the intent to develop an

application that is portable to any database system.

This approach has the right to exist: if such a system works

and addresses all business objectives, why not?

However, this solution also has some obvious drawbacks:

• Data consistency is ensured by the application.

Instead of relying on the database system to ensure data

101

vi

consistency (and this is exactly what relational database

systems are especially good at), all the required checks are

performed by the application. Rest assured that sooner

or later your database will contain inconsistent data.

You have to either fix these errors, or teach the applica-

tion how to handle them. If multiple applications use

the same database, enforcing data consistency without

database-level constraints becomes impractical.

• Performance leaves much to be desired.

ORM systems allow you to create an abstraction level over

the database, but the quality of SQL queries they generate

is rather questionable. As a rule, multiple small queries

are executed, and each of them is quite fast on its own.

Such a model can cope only with low load on small data

volumes and is virtually impossible to optimize on the

database side.

• Application code gets more complicated.

Using application-oriented programming languages, it’s

impossible to write a really complex query that could be

properly translated to SQL in an automated way. Thus,

complex data processing (if it is needed, of course) has

to be implemented at the application level, with all the

required data retrieved from the database in advance, but

it requires an extra data transfer over the network. Fur-

thermore, such algorithms as scans, joins, sorting, and

aggregation provided by database systems are guaran-

teed to perform better than the application code, as they

have been improved and optimized for years.

To fully utilize database features, including integrity con-

straints and stored procedures, a thorough understanding of

its capabilities is necessary. You have to master the SQL lan-

guage to write queries and learn one of the server program-

102

vi

ming languages (typically, PL/pgSQL) to create functions and

triggers. In return, you will get a reliable tool, one of the

most important building blocks for any information system

architecture.

In any case, you have to decide for yourself where to imple-

ment business logic: on the server side or on the client side.

We’ll just note that there’s no need to go to extremes, as the

truth often lies somewhere in the middle.

VII Configuring

PostgreSQL

Basic Settings

The default settings allow us to start PostgreSQL on virtu-

ally any hardware, including low-end systems. But for best

performance, the database configuration has to take into ac-

count both physical characteristics of the server and a typical

application workload.

Here we’ll cover only some of the basic settings that must

be considered for a production-level database system. Fine-

tuning for a specific application requires additional expertise,

which can be acquired through PostgreSQL database admin-

istration courses (see p. 149).

Changing Configuration Parameters

To change a configuration parameter, you have to open the

postgresql.conf file and either find the required parameter

and modify its value, or add a new line at the end of the file:

it will have priority over the setting specified above in the

same file.

After changing the settings, you have to reload the server

configuration:

104

vii

postgres=# SELECT pg_reload_conf();

Now check the current setting using the SHOW command. If

the parameter value has not changed, take a look into the

server log: you might have made a mistake when editing the

file.

Instead of manually editing the configuration file, you can

use an SQL command to update the parameter. However, this

approach still requires reloading the server configuration:

postgres=# ALTER SYSTEM SET work_mem='128MB';

Such settings get into the postgresql.auto.conf file and take

priority over the values specified in the main file. The ad-

vantage of this method is that the new parameter values get

validated at once.

The Most Important Parameters

It is highly important to pay attention to parameters that

define how PostgreSQL uses RAM.

The shared_buffers parameter sets the size of PostgreSQL’s

shared memory buffers, which store frequently accessed data

to minimize disk reads. A reasonable starting value is 25%

of all the RAM used by the server. Changing this parameter

requires a server restart.

The effective_cache_size value has no effect on memory

allocation; it merely prompts the size of cache PostgreSQL

can count on, including the operating system cache. The

larger the value, the higher priority is given to indexes. You

can start with 50–75% of RAM.

105

vii

The work_mem parameter defines the amount of memory al-

located for sorting, building hash tables when performing

joins, and other operations. Frequent use of temporary files

suggests insufficient memory allocation, which can degrade

performance. In most cases, the default value of 4 MB should

be increased by at least several times, but be cautious not to

exceed the overall RAM size of the server.

The maintenance_work_mem parameter defines the amount

of memory allocated for service processes. Higher values can

speed up indexing and vacuuming. This parameter is usually

set to a value that is several times higher than work_mem.

For example, for 32 GB of RAM, you can start with the follow-

ing settings:

shared_buffers = '8GB'

effective_cache_size = '24GB'

work_mem = '128MB'

maintenance_work_mem = '512MB'

The ratio of random_page_cost to seq_page_cost must

match the ratio of random disk access speed to sequential

access speed. By default, random access is assumed to be

four times slower than sequential one (which works well

for regular HDDs). For disk arrays and SSDs, lowering the

random_page_cost value can improve performance. How-

ever, the seq_page_cost value should remain at 1.

For example, the following setting is appropriate for SSD

drives:

random_page_cost = 1.2

It’s very important to configure autovacuum. This process per-

forms “garbage collection” and several other critical system

106

vii

tasks. This setting highly depends on a particular application

and its workload.

In most cases, you can start with the following configura-

tion:

• Reduce the autovacuum_vacuum_scale_factor value to

0.01 to perform autovacuum more often and in smaller

batches.

• Increase the autovacuum_vacuum_cost_limit value (or

reduce autovacuum_vacuum_cost_delay) by 10 times to

speed up autovacuum (for version 11 or lower).

It’s equally important to properly configure the processes re-

lated to buffer cache and WAL maintenance, but the exact

settings also depend on a particular application. For a start,

you can set the checkpoint_completion_target parameter

to 0.9 (to spread out the load), increase checkpoint_timeout

from 5 to 30 minutes (to reduce the overhead caused by

checkpoints), and proportionally increase the max_wal_size

value (for the same purpose).

To learn tips and tricks for configuring various parameters,

you can take the DBA2 course (p. 154).

Connection Settings

As discussed in the “PostgreSQL for Applications” chapter

(p. 89), the listen_addresses parameter should typically be

set to '*', and the pg_hba.conf configuration file must be

updated to allow connections.

107

vii

Bad Advice

You can sometimes find advice about improving performance

that should never be followed:

• Turning off autovacuum.

Such “resource saving”may provide minor short-term per-

formance benefits but will result in data fragmentation

and bloated tables and indexes. Sooner or later your data-

base system is sure to stop functioning normally. Auto-

vacuum should never be turned off, it should be properly

configured.

• Turning off disk synchronization (fsync = off).

Disabling fsync will indeed bring a tangible performance

improvement, but any server crash (caused by either soft-

ware or hardware failure) will lead to a complete loss of

all databases. In this case, you can only restore the system

from a backup (if you happen to have one).

PostgreSQL and 1C Solutions

PostgreSQL is officially supported by 1C, a widely used Rus-

sian ERP system. It provides a cost-effective alternative to

expensive commercial database licenses.

As any other applications, 1C products will work much faster

if PostgreSQL is configured appropriately. Additionally, spe-

cific server parameters are required for optimal performance

with 1C.

Here we’ll provide some installation and setup instructions

that can help you get started.

108

vii

Choosing PostgreSQLVersion

1C requires a custom patched version of PostgreSQL. You can

download it from releases.1c.ru, or use Postgres Pro Standard

or Postgres Pro Enterprise, which also include all the required

patches.

PostgreSQL can work on Windows as well, but if you have a

choice, it’s better to opt for a Linux distribution.

Before you start the installation, you have to decide whether

a dedicated database server is required. A dedicated server

offers higher performance because of better load balancing

between the application server and the database server.

Configuration Parameters

Physical specifications of the servermustmatch the expected

load. You can use the following data as a baseline: a dedi-

cated 8-core server with 8 GB of RAM and a disk subsystem

with RAID1 SSD should be enough for a database of 100 GB,

the total number of 50 users, and up to 2000 documents

per day. If the server is not dedicated, PostgreSQL must get

the corresponding amount of resources from the common

server.

Based on the general recommendations and 1C applica-

tion requirements, the following initial settings are recom-

mended for such a server:

Mandatory settings for 1C

standard_conforming_strings = off

escape_string_warning = off

shared_preload_libraries = 'online_analyze, plantuner'

plantuner.fix_empty_table = on

https://releases.1c.ru

109

vii

online_analyze.enable = on

online_analyze.table_type = 'temporary'

online_analyze.local_tracking = on

online_analyze.verbose = off

The following settings depend on the available RAM

shared_buffers = '2GB' # 25% of RAM

effective_cache_size = '6GB' # 75% of RAM

work_mem = '64MB' # 64-128MB

maintenance_work_mem = '256MB' # 4*work_mem

Active use of temporary tables

temp_buffers = '32MB' # 32-128MB

The default value of 64 is not enough

max_locks_per_transaction = 256

Connection Settings

Ensure that the listen_addresses parameter in the post-

gresql.conf file is set to *.

Add the following line at the start of the pg_hba.conf config-

uration file, specifying the actual address and subnet mask

instead of the “IP-address-of-the-1C-server” placeholder:

host all all IP-address-of-1C-server md5

After restarting PostgreSQL, all the changes in pg_hba.conf

and postgresql.conf files take effect, and the server is ready

to accept 1C connections.

1C establishes a connection as a superuser, usually postgres.

Set a password for this role:

postgres=# ALTER ROLE postgres PASSWORD 'p@ssw0rd';

ALTER ROLE

110

vii

In configuration settings

of the 1C information

database, specify the

IP-address and port of

the PostgreSQL server

as your database server

and choose “PostgreSQL”

as the required DBMS

type. Specify the name of

the database that will be

used for 1C and select the

“Create database if none

present” check box (do

not create this database

using PostgreSQL means).

Provide the name and

password of a superuser

role that will be used to establish connections.

These recommendations should help you to quickly get

started, even though they cannot guarantee optimal perfor-

mance.

We thank Anton Doroshkevich from the Infosoft company for

his assistance in preparing these recommendations.

VIII pgAdmin

pgAdmin is a widely used graphical tool for managing Post-

greSQL databases. It simplifies common database adminis-

tration tasks, provides an interface for exploring database

objects, and allows users to execute SQL queries.

For many years, pgAdmin 3 was the de facto standard for

PostgreSQL administration. However, in 2016, EnterpriseDB

discontinued support for pgAdmin 3 and introduced pgAd-

min 4, which was completely rewritten in Python and modern

web technologies, replacing the original C++ implementation.

Initially, pgAdmin 4 received mixed reviews due to its re-

designed interface. However, ongoing development has led

to significant improvements, making it a more robust and

feature-rich tool.

Installation

To launch pgAdmin 4 on Windows, use the installer avail-

able at pgadmin.org/download. The installation procedure

is straightforward, and the default options are typically suffi-

cient.

For Debian and Ubuntu, add the PostgreSQL repository (see

p. 30), then install pgAdmin 4 using the following com-

mand:

https://pgadmin.org/download

112

viii

$ sudo apt-get install pgadmin4

“pgAdmin4” appears in the list of available programs.

The user interface of this program is fully localized into

a dozen languages. To switch to another language, click

Configure pgAdmin, select Miscellaneous > User language in

the settings window, and then reload the page in your web

browser.

Connecting to a Server

To begin, set up a connection to the server. Click the Add New

Server button and enter an arbitrary connection name in the

General tab of the opened window.

In the Connection tab, enter hostname or address, port num-

ber, username, and password.

If you don’t want to enter the password every time, select

the Save password checkbox. pgAdmin encrypts stored pass-

words using a master password, which you will be prompted

to set upon first use.

Note that this user must already have a password. For exam-

ple, for the postgres user, you can do it with the following

command:

postgres=# ALTER ROLE postgres PASSWORD 'p@ssw0rd';

Click Save to verify the server connection and add it to

pgAdmin.

113

viii

Browser

The left pane displays the Browser tree. Expanding the tree

reveals the server, labeled LOCAL in this example. At the next

level, you can see all its databases:

• appdb has been created to check connection to Post-

greSQL using different programming languages.

• demo is our demo database.

• postgres is always created when PostgreSQL gets in-

stalled.

• test was used in the “Trying SQL” chapter (p. 35).

114

viii

Expanding the Schemas section under appdb reveals the

greetings table, alongwith its columns, constraints, indexes,

and triggers.

The context (right-click) menu provides various actions for

each object type, including exporting, importing, assigning

privileges, and deleting.

The right pane includes several tabs that display reference

information:

• Dashboard provides system activity charts.

• Properties displays the properties of the object selected

in the Browser (data types for columns, etc.)

• SQL shows the SQL command used to create the selected

object.

115

viii

• Statistics lists information used by the query optimizer to

build query plans; it can be used by a database adminis-

trator for case analysis.

• Dependencies, Dependents illustrates dependencies be-

tween the selected object and other objects in the data-

base.

Running Queries

To execute a query, open a new SQL editor tab by selecting

Tools > Query Tool from the menu.

Type your query in the editor and press F5 to execute it. The

Data Output tab in the bottom panel will display the result

of the query.

116

viii

To execute a new query without deleting the previous one,

highlight the desired portion of SQL before pressing F5. Thus,

the whole history of your actions will be always in front of

you. It is usually more convenient than searching for the

required query in the log on the Query History tab.

Other Features

pgAdmin provides a graphical user interface for standard

PostgreSQL utilities, system catalog information, adminis-

tration functions, and SQL commands. pgAdmin includes a

built-in PL/pgSQL debugger for troubleshooting stored pro-

cedures. You can learn about pgAdmin features either on the

product website pgadmin.org or in the built-in pgAdmin help

system.

https://pgadmin.org

IX Additional Features

Full-Text Search

Full-text search refers to searching for documents written

in natural language and sorting the results by relevance to

the search query. In the simplest and most typical case, the

query consists of one or more words, and the relevance is

defined by the frequency of these words in the document.

This is more or less what happens when we type a phrase

in Google or Yandex search engines. However, despite SQL’s

powerful capabilities, it is not always sufficient for effective

data handling. This has become increasingly evident with the

rise of Big Data, which is often poorly structured and difficult

to parse.

There is a large number of search engines, free and paid, that

enable you to index the whole collection of your documents

and set up search of quite decent quality. In this case, the

index—an essential search tool for speeding up queries—is

separate from the database. It means that many valuable

database features become unavailable: database synchro-

nization, transaction isolation, accessing and usingmetadata

to limit the search range, setting up access policies, andmany

more.

Shortcomings of document-oriented database management

systems usually have a similar nature: they have rich full-text

search functionality, but data security and synchronization

118

ix

features are of low priority. Besides, such databases (for ex-

ample, MongoDB) are usually NoSQL ones, so by design, they

lack all the power of SQL accumulated over years.

However, traditional SQL database systems do have built-in

full-text search capabilities. The LIKE operator is part of

the standard SQL syntax, but its flexibility is often insuffi-

cient. Therefore, developers had to implement their own

extensions of the SQL standard. In PostgreSQL, these are

comparison operators ILIKE, ~, ~*, but they don’t solve all

the problems either, as they don’t take into account gram-

matical forms, are not suitable for ranking, and work rather

slowly.

When talking about the tools of the full-text search itself, it’s

important to understand that they are far from being stan-

dardized: each database system uses its own approach and

syntax. Russian users of PostgreSQL have some advantage

here: its full-text search extensions were created by Russian

developers, so there is a possibility to contact the experts

directly or even attend their lectures to go into low-level

details, if required. Here we’ll only provide some simple ex-

amples.

To learn about the full-text search capabilities, we are going

to create one more table in the demo database. Let it be a

lecturer’s draft notes split into chapters by lecture topics:

test=# CREATE TABLE course_chapters(

c_no text REFERENCES courses(c_no),

ch_no text,

ch_title text,

txt text,

CONSTRAINT pkt_ch PRIMARY KEY(ch_no, c_no)

);

CREATE TABLE

119

ix

Now let’s enter the text of the first lectures for our courses

CS301 and CS305:

test=# INSERT INTO course_chapters(

c_no, ch_no, ch_title, txt)

VALUES

('CS301', 'I', 'Databases',

'We start our acquaintance with ' ||

'the fascinating world of databases'),

('CS301', 'II', 'First Steps',

'Getting more fascinated with ' ||

'the world of databases'),

('CS305', 'I', 'Local Networks',

'Here we start our adventurous journey ' ||

'through the intriguing world of networks');

INSERT 0 3

Check the result:

test=# SELECT ch_no AS no, ch_title, txt

FROM course_chapters \gx

−[RECORD 1]−−−

no | I

ch_title | Databases

txt | We start our acquaintance with the

fascinating world of databases

−[RECORD 2]−−−

no | II

ch_title | First Steps

txt | Getting more fascinated with the world of

databases

−[RECORD 3]−−−

no | I

ch_title | Local Networks

txt | Here we start our adventurous journey

through the intriguing world of networks

Now let’s find some information in our databasewith the help

of traditional SQL means (using the LIKE operator):

120

ix

test=# SELECT ch_no AS no, ch_title, txt

FROM course_chapters

WHERE txt LIKE '%fascination%' \gx

It’s easy to guess the result: 0 rows. The LIKE operator sees

no connection between “fascination” and the words “fascinat-

ing” and “fascinated” present in the text.

The query

test=# SELECT ch_no AS no, ch_title, txt

FROM course_chapters

WHERE txt LIKE '%fascinated%' \gx

will return the row from chapter II (but not from chapter I,

where the adjective “fascinating” is used):

−[RECORD 1]−−−

no | II

ch_title | First Steps

txt | Getting more fascinated with the world of

databases

PostgreSQL provides the ILIKE operator, which allows us not

to worry about letter cases; otherwise, you would also have

to take uppercase and lowercase letters into account. True,

there are also regular expressions (search patterns), and set-

ting them up is a truly engaging task, little short of art, but

sometimes you just want a tool that can simply do the job.

So let’s add an additional column to the course_chapters

table; it will have a special type called tsvector:

test=# ALTER TABLE course_chapters

ADD txtvector tsvector;

test=# UPDATE course_chapters

SET txtvector = to_tsvector('english',txt);

test=# SELECT txtvector

FROM course_chapters \gx

121

ix

−[RECORD 1]−−−

txtvector | 'acquaint':4 'databas':10 'fascin':7

'start':2 'world':9

−[RECORD 2]−−−

txtvector | 'databas':8 'fascin':3 'get':1 'world':6

−[RECORD 3]−−−

txtvector | 'adventur':5 'intrigu':9 'journey':6

'network':12 'start':3 'world':10

As we can see, the rows have changed:

• Words are reduced to their root forms (lexemes).

• Numbers have appeared. They indicate the word position

in the text.

• There are no prepositions included (and neither there

would be any conjunctions or other parts of the sentence

that are unimportant for search; they are the so-called

stop words).

The search will be even more efficient if it includes chapter

titles, which are also given more weight in respect to the rest

of the text (it can be done using the setweight function).

Let’s modify the table:

test=# UPDATE course_chapters

SET txtvector =

setweight(to_tsvector('english',ch_title),'B')

|| ' ' ||

setweight(to_tsvector('english',txt),'D');

UPDATE 3

test=# SELECT txtvector FROM course_chapters \gx

−[RECORD 1]−−−

txtvector | 'acquaint':5 'databas':1B,11 'fascin':8

'start':3 'world':10

−[RECORD 2]−−−

txtvector | 'databas':10 'fascin':5 'first':1B 'get':3

'step':2B 'world':8

122

ix

−[RECORD 3]−−−

txtvector | 'intrigu':10 'journey':7 'local':1B

'network':2B,13 'start':5 'world':11

Lexemes are assigned relative weight markers: B and D (pos-

sible options are A, B, C, D). We’ll assign real weights when

writing queries, which will give us more flexibility.

Fully armed, let’s return to search. The to_tsquery function

resembles the to_tsvector function we have seen above: it

converts a string to the tsquery data type used in queries.

test=# SELECT ch_title

FROM course_chapters

WHERE txtvector @@

to_tsquery('english','fascination & database');

ch_title

−−−−−−−−−−−−−

Databases

First Steps

(rows)

You can check that the query 'fascinated & database' and

its other grammatical variants will return the same result.

Here we have used the comparison operator @@, which plays

the same role in full-text search as the LIKE operator does in

regular search. The syntax of the @@ operator does not allow

natural language expressions with spaces, so words in the

query are connected by the “and” logical operator.

The english argument indicates the configuration used by

PostgreSQL.The configuration defines pluggable dictionaries

and the parser, which splits the phrase into separate lex-

emes.

Despite their name, dictionaries enable all kinds of lexeme

transformations. For example, a simple stemmer dictionary

123

ix

like snowball, which is used by default, reduces the word

to its unchangeable part; it allows search to ignore word

endings in queries. You can also plug in other dictionaries,

for example:

• regular dictionaries like ispell, myspell, or hunspell,

which can better handle word morphology

• dictionaries of synonyms

• thesaurus

• unaccent, which can remove diacritics from letters

Thanks to assigned weights, the displayed search results are

ranked:

test=# SELECT ch_title,

ts_rank_cd('{0.1, 0.0, 1.0, 0.0}', txtvector, q)

FROM course_chapters,

to_tsquery('english','Databases') q

WHERE txtvector @@ q

ORDER BY ts_rank_cd DESC;

ch_title | ts_rank_cd

−−−−−−−−−−−−−+−−−−−−−−−−−−

Databases | 1.1

First Steps | 0.1

(rows)

The {0.1, 0.0, 1.0, 0.0} array sets the weights. It is an optional

argument of the ts_rank_cd function. By default, array {0.1,

0.2, 0.4, 1.0} corresponds to D, C, B, A. The word’s weight affects

ranking of the returned row.

In the final experiment, let’s modify the display format. Sup-

pose we would like to highlight the found words in the html

page using the bold type. The ts_headline function specifies

the symbols used to highlight words and sets the minimum

and maximum number of words displayed in a single line:

124

ix

test=# SELECT ts_headline(

'english',

txt,

to_tsquery('english', 'world'),

'StartSel=, StopSel=,

MaxWords=50, MinWords=5'

)

FROM course_chapters

WHERE to_tsvector('english', txt) @@

to_tsquery('english', 'world');

−[RECORD 1]−−−

ts_headline | with the fascinating world of

databases

−[RECORD 2]−−−

ts_headline | with the world of databases

−[RECORD 3]−−−

ts_headline | through the intriguing world of

networks

To speed up full-text search, special indexes are used: GiST,

GIN, and RUM, which are different from regular database in-

dexes. However, like many other useful full-text search fea-

tures, they fall outside the scope of this guide.

To learn more about full-text search, see the documentation:

www.postgrespro.com/doc/textsearch.

Using JSON and JSONB

SQL-based relational databases were originally designed

with a strong emphasis on data consistency and security, at

a time when data volumes were far smaller than they are to-

day. When NoSQL databases appeared, it caused concern in

the community: lack of strict consistency support and amuch

https://www.postgrespro.com/doc/textsearch

125

ix

simpler data structure (at first, it was simply a storage of key–

value pairs) provided a remarkable search speedup. Actively

using parallel computations, they could process unprece-

dented volumes of information and were easy to scale.

Once the initial shock had passed, it became clear that

such a simple structure was insufficient for most practical

tasks. Composite keys were introduced, and then groups of

keys appeared. To remain competitive, relational database

systems began incorporating features commonly associated

with NoSQL.

Since changing the database schema in a relational data-

base incurs high costs, a new JSON data type came in handy.

Having a hierarchical structure similar to XML, it was first

targeted at JavaScript development (hence JS in the title),

including AJAX application development. JSON’s flexibility

allows developers to store and manage data with dynamic,

unpredictable structures without requiring database schema

modifications.

Suppose we need to enter personal data into the students

demo database. We conducted a survey and collected the

information from professors. Some questions in the ques-

tionnaire are optional, while other questions include the“add

more information at your discretion” and “other” fields. If

we followed the traditional approach, the information that

does not fit the current structure would require adding mul-

tiple new tables and columns with lots of empty fields. As

the dataset grows, the whole database may have to be refac-

tored.

We can solve this problem using json or jsonb types. The

jsonb type, which appeared after json, stores data in a com-

pact binary form and, unlike json, supports indexes, which

can sometimes speed up search by an order of magnitude.

126

ix

Let’s create a table with JSON objects:

test=# CREATE TABLE student_details(

de_id int,

s_id int REFERENCES students(s_id),

details json,

CONSTRAINT pk_d PRIMARY KEY(s_id, de_id)

);

test=# INSERT INTO student_details

(de_id, s_id, details)

VALUES

(1, 1451,

'{ "merits": "none",

"flaws":

"immoderate ice cream consumption",

"status" : "expelled"

}'),

(2, 1432,

'{ "hobbies":

{ "guitarist":

{ "band": "Postgressors",

"guitars":["Strat","Telec"]

}

}

}'

),

(3, 1556,

'{ "hobbies": "cosplay",

"merits":

{ "mother-of-five":

{ "Basil": "m", "Simon": "m", "Lucie": "f",

"Mark": "m", "Alex": "unknown"

}

}

}'

);

Let’s verify that the data has been correctly inserted. For con-

venience, we will join the student_details and students

tables using the WHERE clause, as the new table does not

contain students’ names:

127

ix

test=# SELECT s.name, sd.details

FROM student_details sd, students s

WHERE s.s_id = sd.s_id \gx

−[RECORD 1]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

name | Anna

details | { "merits": "none", +

| "flaws": +

| "immoderate ice cream consumption", +

| "status" : "expelled" +

| }

−[RECORD 2]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

name | Victor

details | { "hobbies": +

| { "guitarist": +

| { "band": "Postgressors", +

| "guitars":["Strat","Telec"] +

| } +

| } +

| }

−[RECORD 3]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

name | Nina

details | { "hobbies": "cosplay", +

| "merits": +

| { "mother-of-five": +

| { "Basil": "m", +

| "Simon": "m", +

| "Lucie": "f", +

| "Mark": "m", +

| "Alex": "unknown" +

| } +

| } +

| }

Suppose we are interested in entries that hold information

about the students’ merits. Let’s access the values of the

“merits” key using a special operator ->>:

test=# SELECT s.name, sd.details

FROM student_details sd, students s

WHERE s.s_id = sd.s_id

AND sd.details ->> 'merits' IS NOT NULL \gx

128

ix

−[RECORD 1]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

name | Anna

details | { "merits": "none", +

| "flaws": +

| "immoderate ice cream consumption", +

| "status" : "expelled" +

| }

−[RECORD 2]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

name | Nina

details | { "hobbies": "cosplay", +

| "merits": +

| { "mother-of-five": +

| { "Basil": "m", +

| "Simon": "m", +

| "Lucie": "f", +

| "Mark": "m", +

| "Alex": "unknown" +

| } +

| } +

| }

We have seen that the two entries are related to Anna and

Nina’s merits, but the result is misleading, as Anna’s merits

are actually “none.” Let’s fix the query:

test=# SELECT s.name, sd.details

FROM student_details sd, students s

WHERE s.s_id = sd.s_id

AND sd.details ->> 'merits' IS NOT NULL

AND sd.details ->> 'merits' != 'none';

The new query only returns Nina, whose merits are real.

However, this method is not always effective. Let’s attempt

to retrieve the guitars that Victor plays:

test=# SELECT sd.de_id, s.name, sd.details

FROM student_details sd, students s

WHERE s.s_id = sd.s_id

AND sd.details ->> 'guitars' IS NOT NULL \gx

129

ix

This query won’t return anything. It’s because the corre-

sponding key–value pair is located inside the JSON hierarchy,

nested into the pairs of a higher level:

name | Victor

details | { "hobbies": +

| { "guitarist": +

| { "band": "Postgressors", +

| "guitars":["Strat","Telec"] +

| } +

| } +

| }

To retrieve the list of guitars, let’s use the #> operator and go

down the hierarchy, starting from “hobbies”:

test=# SELECT sd.de_id, s.name,

sd.details #> '{hobbies,guitarist,guitars}'

FROM student_details sd, students s

WHERE s.s_id = sd.s_id

AND sd.details #> '{hobbies,guitarist,guitars}'

IS NOT NULL;

We can see that Victor is a fan of Fender:

de_id | name | ?column?

−−−−−−−+−−−−−−−−+−−−−−−−−−−−−−−−−−−−

| Victor | ["Strat","Telec"]

The json type has a younger sibling: jsonb. The letter “b” im-

plies the binary (rather than text) format of data storage and

structure, which can often result in faster search. Nowadays,

jsonb is used much more frequently than json.

test=# ALTER TABLE student_details

ADD details_b jsonb;

130

ix

test=# UPDATE student_details

SET details_b = to_jsonb(details);

test=# SELECT de_id, details_b

FROM student_details \gx

−[RECORD 1]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

de_id | 1

details_b | {"flaws": "immoderate ice cream

consumption", "merits": "none",

"status": "expelled"}

−[RECORD 2]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

de_id | 2

details_b | {"hobbies": {"guitarist": {"guitars":

["Strat", "Telec"], "band":

"Postgressors"}}}

−[RECORD 3]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

de_id | 3

details_b | {"hobbies": "cosplay", "merits":

{"mother-of-five": {"Basil": "m",

"Lucie": "f", "Alex": "unknown",

"Mark": "m", "Simon": "m"}}}

Besides the notation differences, the order of values has

changed: Alex, who lacks additional information, now ap-

pears before Mark. It’s not a disadvantage of jsonb as com-

pared to json, it’s simply its data storage specifics.

The jsonb type is supported by a larger number of operators

than json. A most useful one is the “contains” operator @>. It

works similar to the #> operator for json.

For example, let’s find the entry that mentions Lucie, one of

the mother-of-five’s children:

test=# SELECT s.name,

jsonb_pretty(sd.details_b) json

FROM student_details sd, students s

WHERE s.s_id = sd.s_id

AND sd.details_b @>

'{"merits":{"mother-of-five":{}}}' \gx

131

ix

−[RECORD 1]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

name | Nina

json | { +

| "merits": { +

| "mother-of-five": { +

| "Alex": "unknown", +

| "Mark": "m", +

| "Basil": "m", +

| "Lucie": "f", +

| "Simon": "m" +

| } +

| }, +

| "hobbies": "cosplay" +

| }

We have used the jsonb_pretty() function, which formats

the output of the jsonb type.

Alternatively, you can use the jsonb_each() function, which

expands key–value pairs:

test=# SELECT s.name,

jsonb_each(sd.details_b)

FROM student_details sd, students s

WHERE s.s_id = sd.s_id

AND sd.details_b @>

'{"merits":{"mother-of-five":{}}}' \gx

−[RECORD 1]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

name | Nina

jsonb_each | (hobbies,"""cosplay""")

−[RECORD 2]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

name | Nina

jsonb_each | (merits,"{""mother-of-five"":

{""Alex"": ""unknown"", ""Mark"":

""m"", ""Basil"": ""m"", ""Lucie"":

""f"", ""Simon"": ""m""}}")

132

ix

Note that the name of Nina’s child is replaced by an empty

space {} in the query. This syntax adds flexibility to the pro-

cess of application development.

But what’s more important, jsonb allows you to create in-

dexes that support the @> operator, its inverse <@, and many

other ones (the GIN index is typically the most efficient). The

json type does not support indexes, so for high-load appli-

cations it is usually recommended to use jsonb.

To learn more about json and jsonb data types and their

associated functions, see the PostgreSQL documentation

at postgrespro.com/doc/datatype-json and postgrespro.com/

doc/functions-json.

When the SQL:2016 standard was published, which included

the SQL/JSON Path language, Postgres Professional devel-

oped its implementation, providing the jsonpath type. It

was later committed to PostgreSQL 12.

• $.a.b.c replaces the 'a'->'b'->'c' syntax that had to be

used in PostgreSQL 11 or lower.

• The $ symbol represents the current context element, that

is, the JSON fragment that has to be parsed.

• @ represents the current context element in filter expres-

sions. All the paths available in the $ expression are

searched.

• * is a wildcard symbol. In expressions with $ and @ it

denotes any value of the path taking the hierarchy into

account.

• ** is a wildcard that can denote any part of the path in

expressions with $ or @, without taking the hierarchy into

account. It comes in handy if you don’t know the exact

nesting level of the elements.

https://postgrespro.com/doc/datatype-json
https://postgrespro.com/doc/functions-json
https://postgrespro.com/doc/functions-json

133

ix

• The ? operator is used to create a filter similar to WHERE.

For example: $.a.b.c ? (@.x > 10).

To find cosplay enthusiasts using the jsonb_path_query()

function, you can write the following query:

test=# SELECT s_id, jsonb_path_query(

details::jsonb,

'$.hobbies ? (@ == "cosplay")'

)

FROM student_details;

s_id | jsonb_path_query

−−−−−−+−−−−−−−−−−−−−−−−−−

1556 | "cosplay"

(1 row)

This query searches only through the JSON branch that begins

with the “hobbies” key, checking whether the corresponding

value equals “cosplay.” But if we replace “cosplay” with “gui-

tarist,” the query won’t return anything because “guitarist” is

used in our table as a key, not as a value of the nested ele-

ment.

Queries can operate on two hierarchical levels: one inside

the path expression, which defines the search area, and the

other inside the filter expression, which matches the results

with the specified condition. It means there are different

ways to reach the same goal.

For example, the query

test=# SELECT s_id, jsonb_path_query(

details::jsonb,

'$.hobbies.guitarist.band?(@=="Postgressors")'

)

FROM student_details;

134

ix

and the query

test=# SELECT s_id, jsonb_path_query(

details::jsonb,

'$.hobbies.guitarist?(@.band=="Postgressors").band'

)

FROM student_details;

return the same result:

s_id | jsonb_path_query

−−−−−−+−−−−−−−−−−−−−−−−−−

1432 | "Postgressors"

(1 row)

In the first example, we defined a filter expression for each

entry within the “hobbies.guitarist.band” branch. If we take a

look at the JSON itself, we can see that this branch has only

one value: “Postgressors.” So there was actually nothing to

filter out. In the second example, the filter is applied one step

higher, sowe have to specify the path to the“group”within the

filter expression; otherwise, the filter won’t find any values.

If we use such syntax, we have to know the JSON hierarchy in

advance. But what if we don’t know the hierarchy?

In this case, we can use the ** wildcard. It is an extremely

useful feature! Suppose we are not sure what a “Strat” is:

whether it’s a high-altitude balloon, a guitar, or a member of

the highest social stratum. But we have to find out whether

we have this word in our table at all. Previously, it would

have required a complex search through the JSON document

(unless we converted jsonb to text). Now you can simply run

the following query:

test=# SELECT s_id, jsonb_path_exists(

details::jsonb, '$.** ? (@ == "Strat")'

)

FROM student_details;

135

ix

s_id | jsonb_path_exists

−−−−−−+−−−−−−−−−−−−−−−−−−−

1451 | f

1432 | t

1556 | f

1451 | f

(4 rows)

You can learn more about SQL/JSON Path capabilities

in the documentation (postgrespro.com/doc/datatype-json#

DATATYPE-JSONPATH) and in the article “JSONPath in Post-

greSQL: committing patches and selecting apartments” (habr.

com/en/company/postgrespro/blog/500440/).

The SQL:2016 Standard defines a few more convenient fea-

tures and expressions for working with JSON. Eventually, they

make their way into PostgreSQL.Wewill discuss someof them

here; for the full list, see the documentation: postgrespro.

com/doc/functions-json.

Let’s get back to our friends Anna, Victor and Nina. They took

part in a poll to determine what TV shows the younger gen-

eration likes. The results are stored in a table.

test=# CREATE TABLE tv_series(

se_id int,

s_id int REFERENCES students(s_id),

se_details jsonb,

CONSTRAINT pk_se PRIMARY KEY(s_id, se_id)

);

test=# INSERT INTO tv_series (se_id, s_id, se_details)

VALUES

(1, 1451,

'{"title": ["Game of Thrones",

"Peaky Blinders"]}'

),

https://postgrespro.com/doc/datatype-json#DATATYPE-JSONPATH
https://postgrespro.com/doc/datatype-json#DATATYPE-JSONPATH
https://habr.com/en/company/postgrespro/blog/500440/
https://habr.com/en/company/postgrespro/blog/500440/
https://postgrespro.com/doc/functions-json
https://postgrespro.com/doc/functions-json

136

ix

(2, 1432,

'{"title": "Babylon 5"}'

),

(3, 1556,

'{"title": ["Twin Peaks",

"Peaky Blinders"]}'

);

Database engineers analyze the results. They’ve got a pow-

erful toolkit: aggregation functions, check constraints, an

assortment of json(b) tools.

The arrays should first be split into separate elements

(unnest). It can be done with jsonb_array_elements, but

there’s an issue:

text=# SELECT jsonb_array_elements(

se_details->'title'

)

FROM tv_series;

ERROR: cannot extract elements from a scalar

Naturally, the data from the questionnaires has been put into

the database carelessly: Student 1432 does not have a corre-

sponding array (of one element only, but still). Just to make

sure, use IS [NOT] JSON ARRAY:

text=# SELECT se_id, se_details

FROM tv_series

WHERE se_details->'title' IS NOT JSON ARRAY \gx

−[RECORD 1]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

se_id | 2

se_details | {"title": "Babylon 5"}

We can fix the type with jsonb_set, which can modify jsonb

structure:

137

ix

text=# UPDATE tv_series

SET se_details = jsonb_set(

se_details,

'{title}',

'["Babylon 5"]'

)

WHERE se_id = 2;

Now:

test=# SELECT DISTINCT jsonb_array_elements(

se_details->'title'

)

FROM tv_series;

jsonb_array_elements

−−−−−−−−−−−−−−−−−−−−−−

"Twin Peaks"

"Babylon 5"

"Peaky Blinders"

"Game of Thrones"

(4 rows)

Here is our final list. Note that IS JSON ARRAY belongs to a

group of predicates, together with IS JSON SCALAR, IS JSON

OBJECT and the more general IS JSON. See the documenta-

tion for more: postgrespro.com/doc/functions-json.

Integration with External Systems

Real-world applications are not isolated, and they often have

to send data to each other. Such interactions can be im-

plemented at the application level, for example, using web

services or file exchange, or you can rely on the database

functionality for this purpose.

https://postgrespro.com/doc/functions-json

138

ix

PostgreSQL supports the ISO/IEC 9075-9 standard (SQL/MED,

Management of External Data), which defines access to exter-

nal data sources from SQL via a special mechanism of foreign

data wrappers.

The idea is to access external (foreign) data as if it were

located in regular PostgreSQL tables. It requires creating for-

eign tables, which do not contain any data themselves and

only redirect all queries to an external data source. This ap-

proach facilitates application development, as it allows to

abstract from specifics of a particular external source.

Creating a foreign table involves several steps.

1. The CREATE FOREIGN DATA WRAPPER command plugs in

a library for working with a particular data source.

2. The CREATE SERVER command defines a foreign server.

You should usually specify such connection parameters

as host name, port number, and database name.

3. The CREATE USER MAPPING command provides username

mapping since different PostgreSQL users can connect

to one and the same foreign source on behalf of differ-

ent external users.

4. The CREATE FOREIGN TABLE command creates foreign

tables for the specified external tables and views, while

IMPORT FOREIGN SCHEMA allows to import descriptions

of some or all tables from the external schema.

Below we’ll discuss PostgreSQL integration with the most

popular databases: Oracle, MySQL, SQL Server, and Post-

greSQL itself. But first we need to install the libraries required

for working with these databases.

139

ix

Installing Extensions

The PostgreSQL distribution includes two foreign data wrap-

pers: postgres_fdw and file_fdw. The first one is designed

for working with external PostgreSQL databases, while the

second one works with files on a server. Besides, the com-

munity develops and supports various libraries that provide

access to many popular databases. To get the full list, take a

look at pgxn.org/tag/fdw.

Foreign data wrappers for Oracle, MySQL, and SQL Server are

available as extensions:

• Oracle — github.com/laurenz/oracle_fdw

• MySQL — github.com/EnterpriseDB/mysql_fdw

• SQL Server — github.com/tds-fdw/tds_fdw

Follow the instructions on these web pages to build and

install these extensions. If all goes well, you will see the

corresponding foreign data wrappers in the list of available

extensions. For example, for oracle_fdw:

test=# SELECT name, default_version

FROM pg_available_extensions

WHERE name = 'oracle_fdw' \gx

−[RECORD 1]−−−+−−−−−−−−−−−

name | oracle_fdw

default_version | 1.2

Oracle

First, let’s create an extension, which will add a foreign data

wrapper:

https://pgxn.org/tag/fdw
https://github.com/laurenz/oracle_fdw
https://github.com/EnterpriseDB/mysql_fdw
https://github.com/tds-fdw/tds_fdw

140

ix

test=# CREATE EXTENSION oracle_fdw;

CREATE EXTENSION

Check that the corresponding wrapper has been added:

test=# \dew

List of foreign-data wrappers

−[RECORD 1]−−−−−−−−−−−−−−−−−−−

Name | oracle_fdw

Owner | postgres

Handler | oracle_fdw_handler

Validator | oracle_fdw_validator

The next step is setting up a foreign server. In the OPTIONS

clause, you have to specify the dbserver option, which de-

fines connection parameters for the Oracle instance: server

name, port number, and instance name.

test=# CREATE SERVER oracle_srv

FOREIGN DATA WRAPPER oracle_fdw

OPTIONS (dbserver '//localhost:1521/orcl');

CREATE SERVER

The PostgreSQL user postgres will be connecting to the

Oracle instance as scott.

test=# CREATE USER MAPPING FOR postgres

SERVER oracle_srv

OPTIONS (user 'scott', password 'tiger');

CREATE USER MAPPING

141

ix

We’ll import foreign tables into a separate schema. Let’s cre-

ate it:

test=# CREATE SCHEMA oracle_hr;

CREATE SCHEMA

Now let’s import some foreign tables. We’ll do it for just two

popular tables, dept and emp:

test=# IMPORT FOREIGN SCHEMA "SCOTT"

LIMIT TO (dept, emp)

FROM SERVER oracle_srv

INTO oracle_hr;

IMPORT FOREIGN SCHEMA

Note that Oracle data dictionary stores object names in up-

percase, while PostgreSQL system catalog saves them in low-

ercase. When working with external data in PostgreSQL, you

have to double-quote uppercase Oracle schema names to

avoid their conversion to lowercase.

Let’s view the list of foreign tables:

test=# \det oracle_hr.*

List of foreign tables

Schema | Table | Server

−−−−−−−−−−−+−−−−−−−+−−−−−−−−−−−−

oracle_hr | dept | oracle_srv

oracle_hr | emp | oracle_srv

(2 rows)

Now run the following queries on the foreign tables to access

the external data:

test=# SELECT * FROM oracle_hr.emp LIMIT 1 \gx

142

ix

−[RECORD 1]−−−−−−−−−−−−−−−−−−−

empno | 7369

ename | SMITH

job | CLERK

mgr | 7902

hiredate | 1980-12-17

sal | 800.00

comm |

deptno | 20

Write operations on external data are also allowed:

test=# INSERT INTO oracle_hr.dept(deptno, dname, loc)

VALUES (50, 'EDUCATION', 'MOSCOW');

INSERT 0 1

test=# SELECT * FROM oracle_hr.dept;

deptno | dname | loc

−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−

10 | ACCOUNTING | NEW YORK

20 | RESEARCH | DALLAS

30 | SALES | CHICAGO

40 | OPERATIONS | BOSTON

50 | EDUCATION | MOSCOW

(5 rows)

MySQL

Create an extension for the required foreign data wrapper:

test=# CREATE EXTENSION mysql_fdw;

CREATE EXTENSION

The foreign server for the external instance is defined by the

host and port parameters:

143

ix

test=# CREATE SERVER mysql_srv

FOREIGN DATA WRAPPER mysql_fdw

OPTIONS (host 'localhost', port '3306');

CREATE SERVER

We are going to establish connections on behalf of a MySQL

superuser:

test=# CREATE USER MAPPING FOR postgres

SERVER mysql_srv

OPTIONS (username 'root', password 'p@ssw0rd');

CREATE USER MAPPING

Thewrapper supports the IMPORT FOREIGN SCHEMA command,

but we can also create a foreign table manually:

test=# CREATE FOREIGN TABLE employees (

emp_no int,

birth_date date,

first_name varchar(14),

last_name varchar(16),

gender varchar(1),

hire_date date)

SERVER mysql_srv

OPTIONS (dbname 'employees',

table_name 'employees');

CREATE FOREIGN TABLE

Check the result:

test=# SELECT * FROM employees LIMIT 1 \gx

−[RECORD 1]−−−−−−−−−−

emp_no | 10001

birth_date | 1953-09-02

first_name | Georgi

last_name | Facello

gender | M

hire_date | 1986-06-26

144

ix

Just like the Oracle wrapper, mysql_fdw allows both read and

write operations.

SQL Server

Create an extension for the required foreign data wrapper:

test=# CREATE EXTENSION tds_fdw;

CREATE EXTENSION

Create a foreign server:

test=# CREATE SERVER sqlserver_srv

FOREIGN DATA WRAPPER tds_fdw

OPTIONS (servername 'localhost', port '1433',

database 'AdventureWorks');

CREATE SERVER

The required connection information is the same: you have

to provide the host name, the port number, and the database

name. But the OPTIONS clause takes different parameters as

compared to oracle_fdw and mysql_fdw.

We are going to establish connections on behalf of an SQL

Server superuser:

test=# CREATE USER MAPPING FOR postgres

SERVER sqlserver_srv

OPTIONS (username 'sa', password 'p@ssw0rd');

CREATE USER MAPPING

Let’s create a separate schema for foreign tables:

test=# CREATE SCHEMA sqlserver_hr;

CREATE SCHEMA

145

ix

Import the whole HumanResources schema into the created

PostgreSQL schema:

test=# IMPORT FOREIGN SCHEMA HumanResources

FROM SERVER sqlserver_srv

INTO sqlserver_hr;

IMPORT FOREIGN SCHEMA

You can display the list of imported tables using the \det

command, or find them in the system catalog by running the

following query:

test=# SELECT ft.ftrelid::regclass AS "Table"

FROM pg_foreign_table ft;

Table

−−

sqlserver_hr.Department

sqlserver_hr.Employee

sqlserver_hr.EmployeeDepartmentHistory

sqlserver_hr.EmployeePayHistory

sqlserver_hr.JobCandidate

sqlserver_hr.Shift

(6 rows)

Object names are case-sensitive, so they should be enclosed

in double quotes in PostgreSQL queries:

test=# SELECT "DepartmentID", "Name", "GroupName"

FROM sqlserver_hr."Department"

LIMIT 4;

DepartmentID | Name | GroupName

−−−−−−−−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−

1 | Engineering | Research and Development

2 | Tool Design | Research and Development

3 | Sales | Sales and Marketing

4 | Marketing | Sales and Marketing

(4 rows)

146

ix

Currently tds_fdw supports only reading; write operations

are not allowed.

PostgreSQL

Create an extension and a wrapper:

test=# CREATE EXTENSION postgres_fdw;

CREATE EXTENSION

We are going to connect to another database of the same

server instance, so we only have to provide the dbname pa-

rameter when creating a foreign server. Other parameters

(such as host, port, etc.) can be omitted.

test=# CREATE SERVER postgres_srv

FOREIGN DATA WRAPPER postgres_fdw

OPTIONS (dbname 'demo');

CREATE SERVER

There is no need to specify the password if you create a user

mapping within a single cluster:

test=# CREATE USER MAPPING FOR postgres

SERVER postgres_srv

OPTIONS (user 'postgres');

CREATE USER MAPPING

Import all tables and views of the bookings schema:

test=# IMPORT FOREIGN SCHEMA bookings

FROM SERVER postgres_srv

INTO public;

IMPORT FOREIGN SCHEMA

147

ix

Check the result:

test=# SELECT * FROM bookings LIMIT 3;

book_ref | book_date | total_amount

−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−

000004 | 2015-10-12 14:40:00+03 | 55800.00

00000F | 2016-09-02 02:12:00+03 | 265700.00

000010 | 2016-03-08 18:45:00+03 | 50900.00

000012 | 2017-07-14 09:02:00+03 | 37900.00

000026 | 2016-08-30 11:08:00+03 | 95600.00

(5 rows)

To learn more about postgres_fdw, see the documentation:

postgrespro.com/doc/postgres-fdw.

Foreign data wrappers are also worth mentioning as the com-

munity considers them to be the basis for built-in sharding in

PostgreSQL. Sharding is similar to partitioning: they both use

a particular criterion to split a table into several parts that

are stored independently. The difference is that partitions are

stored on the same server, while shards are located on differ-

ent ones. Partitioning has been available in PostgreSQL for

quite a long time. Starting from version 10, this mechanism

is being actively developed, and many useful features have

already been added: declarative syntax, dynamic partition

pruning, support for parallel operations, and other miscel-

laneous enhancements. You can also use foreign tables as

partitions, which virtually turns partitioning into sharding.

However, significant work remains before sharding is fully

practical:

• Consistency is not guaranteed: external data is accessed

in separate local transactions rather than in a single dis-

tributed one.

https://postgrespro.com/doc/postgres-fdw

148

ix

• You can’t duplicate the same data on different servers to

enhance fault tolerance.

• All actions required to create tables on shards and the

corresponding foreign tables have to be done manually.

These challenges are already addressed in Shardman, a

new tool developed by Postgres Professional (postgrespro.

ru/products/shardman).

Another extension included into the distribution for work-

ing with PostgreSQL databases is dblink. It allows you

to explicitly manage connections (to connect and discon-

nect), execute queries, and get the results asynchronously:

postgrespro.com/doc/dblink.

https://postgrespro.ru/products/shardman
https://postgrespro.ru/products/shardman
https://postgrespro.com/doc/dblink

X Education

and Certification

Documentation

Reading the documentation is indispensable for professional

use of PostgreSQL. It describes all the database features

and provides an exhaustive reference that should always

be readily available. Here, you can get full and precise in-

formation firsthand: it is written by developers themselves

and is carefully kept up-to-date at all times. The PostgreSQL

documentation is available at www.postgresql.org/docs or

postgrespro.com/docs.

At Postgres Professional, we have translated the whole Post-

greSQL documentation set into Russian, including the latest

version. It is available on our website: postgrespro.ru/docs.

While working on this translation, we also compiled

an English-Russian glossary, published at postgrespro.ru/

education/glossary. We recommend consulting this glossary

when translating English articles into Russian to use consis-

tent terminology familiar to a wide audience.

There are also French (docs.postgresql.fr), Japanese (www.

postgresql.jp/document), and Chinese (postgres.cn/docs)

translations provided by national communities.

https://www.postgresql.org/docs
https://postgrespro.com/docs
https://postgrespro.ru/docs
https://postgrespro.ru/education/glossary
https://postgrespro.ru/education/glossary
https://docs.postgresql.fr
https://www.postgresql.jp/document
https://www.postgresql.jp/document
https://postgres.cn/docs

150

x

Training Courses

We develop training courses for those who start using Post-

greSQL or would like to improve their professional skills.

Courses for database administrators:

DBA1

Basic PostgreSQL

administration

DBA2

Configuration

and monitoring

DBA3

Replication

and backups

QPT

Query perfor-

mance tuning

Courses for application developers:

DEV1

Basic server-side

application development

DEV2

Advanced server-side

application development

QPT

Query perfor-

mance tuning

151

x

An additional course about our primary product for those

who have completed the administration and development

courses:

DBA Courses DEV Courses

PGPRO

Postgres Pro Enterprise

Features

The PostgreSQL and Postgres Pro documentation contains ev-

ery detail about PostgreSQL, but the information is often scat-

tered across different chapters, so you may have to carefully

read it several times before you gain full understanding.

Training courses are intended to complement the documenta-

tion rather than replace it. They consist of separate modules

that gradually explain a particular topic, focusing on impor-

tant practical information. Courses can broaden your outlook,

structure the previously gained bits of knowledge, and help

you find your way around the documentation, should you

need to quickly get some particular details.

Each course topic includes theory and practice. Inmost cases,

theory includes both slides and a live demo on a real system.

Students receive all course slides with extensive annotations,

outputs of demo scripts, solutions to practical assignments,

and additional reference materials on select topics.

152

x

Where and How to Take a Training

For non-commercial use and self-study, all course materials,

including videos, are available on our website for free. You

can find their Russian version at postgrespro.ru/education/

courses.

The courses currently translated into English are published

at postgrespro.com/community/courses.

You can also take these courses at a specialized training

center under the supervision of an experienced lecturer.

Upon completing the course, you will receive a certificate

of completion. Authorized training centers are listed here:

postgrespro.ru/education/where.

DBA1. Basic PostgreSQL administration

Duration: 3 days

Background knowledge required:

Basic knowledge of databases and SQL.

Familiarity with Unix.

Knowledge and skills gained:

General understanding of PostgreSQL architecture.

Installation, initial setup, server management.

Logical structure and physical data layout.

Basic administration tasks.

User and access management.

Backup, recovery, and replication.

https://postgrespro.ru/education/courses
https://postgrespro.ru/education/courses
https://postgrespro.com/community/courses
https://postgrespro.ru/education/where

153

x

Topics:

Basic toolkit

1. Installation and server management

2. Using psql

3. Configuration

Architecture

4. PostgreSQL overview

5. Isolation and multi-version concurrency control

6. Vacuum

7. Buffer cache and write-ahead log

Data management

8. Databases and schemas

9. System catalog

10. Tablespaces

11. Low-level

Administration tasks

12. Monitoring

Access control

13. Roles and attributes

14. Privileges

15. Row-level security

16. Connection and authentication

Backups

17. Overview

Replication

18. Overview

Course materials in English are available for self-study at

postgrespro.com/community/courses/DBA1.

https://postgrespro.com/community/courses/DBA1

154

x

DBA2. Configuring and monitoring PostgreSQL

Duration: 4 days

Background knowledge required:

SQL fundamentals.

Good command of Unix OS.

Familiarity with PostgreSQL within the scope of the DBA1

course.

Knowledge and skills gained:

Setting up various configuration parameters based on the

understanding of server internals.

Monitoring server activity and using the collected data for

iterative tuning of PostgreSQL configuration.

Configuring localization settings.

Managing extensions and getting started with server up-

grades.

Topics:

Multi-version concurrency control

1. Transaction isolation

2. Pages and row versions

3. Data snapshots

4. HOT updates

5. Vacuum

6. Autovacuum item Freezing

Logging

7. Buffer cache

8. Write-ahead log

9. Checkpoints

10. WAL configuration

155

x

Locking

11. Object locks

12. Row-level locks

13. Memory locks

Administration tasks

14. Managing extensions

15. Localization

16. Server upgrades

Course materials in Russian are available for self-study at

postgrespro.ru/education/courses/DBA2.

DBA3. Replication and backups

Duration: 2 days

Background knowledge required:

SQL fundamentals.

Good command of Unix OS.

Familiarity with PostgreSQL within the scope of the DBA1

course.

Knowledge and skills gained:

Taking backups.

Setting up physical and logical replication.

Recognizing replication use cases.

Understanding cluster technologies.

Topics:

https://postgrespro.ru/education/courses/DBA2

156

x

Backups

1. Logical backup

2. Base backup

3. WAL archive

Replication

4. Physical replication

5. Switchover to a replica

6. Logical replication

7. Usage scenarios

Cluster Technologies

8. Overview

Course materials in Russian are available for self-study at

postgrespro.ru/education/courses/DBA3.

DEV1. Basic server-side application development

Duration: 4 days

Background knowledge required:

SQL fundamentals.

Experience with any procedural programming language.

Basic knowledge of Unix OS.

Knowledge and skills gained:

General information about PostgreSQL architecture.

Using the main database objects.

Programming in SQL and PL/pgSQL on the server side.

Using the main data types, including records and arrays.

Setting up client-server communication channels.

https://postgrespro.ru/education/courses/DBA3

157

x

Topics:

Basic toolkit

1. Installation and server management, psql

Architecture

2. A general overview of PostgreSQL

3. Isolation and MVCC

4. Buffer cache and WAL

Data organization

5. Logical structure

6. Physical structure

Bookstore application

7. Application schema and interface

SQL

8. Functions

9. Procedures

10. Composite types

PL/pgSQL

11. Overview and programming structures

12. Executing queries

13. Cursors

14. Dynamic commands

15. Arrays

16. Error handling

17. Triggers

18. Debugging

Access control

19. Access control overview

Backup

20. Logical backup

158

x

Course materials in English are available for self-study at

postgrespro.com/community/courses/DEV1.

DEV2. Advanced server-side application

development

Duration: 4 days

Background knowledge required:

General understanding of PostgreSQL architecture.

Strong SQL and PL/pgSQL skills.

Basic knowledge of Unix OS.

Knowledge and skills gained:

Understanding server internals.

Using all PostgreSQL capabilities in application logic im-

plementations.

Extending database functionality to address specific

tasks.

Topics:

Architecture

1. Isolation

2. Server internals

3. Vacuum

4. Write-ahead logging

5. Locks

Bookstore

6. Bookstore application 2.0

https://postgrespro.com/community/courses/DEV1

159

x

Extensibility

7. Connection pooling

8. Data types for large values

9. User-defined data types

10. Operator classes

11. Semi-structured data

12. Background processes

13. Asynchronous processing

14. Creating extensions

15. Programming languages

16. Aggregate and window functions

17. Full-text search

18. Physical replication

19. Logical replication

20. Foreign data

Course materials in Russian are available for self-study at

postgrespro.ru/education/courses/DEV2.

QPT. Query Performance Tuning

Duration: 2 days

Background knowledge required:

Familiarity with Unix OS.

Good command of SQL.

Some knowledge of PL/pgSQL will be useful, but is not

mandatory.

Familiarity with PostgreSQL within the scope of the DBA1

course (for DBAs) or DEV1 (for developers).

https://postgrespro.ru/education/courses/DEV2

160

x

Knowledge and skills gained:

In-depth understanding of query planning and execution.

Performance tuning of the server instance.

Troubleshooting query issues and optimizing queries.

Topics:

1. Airlines database

2. Query execution

3. Sequential scans

4. Index scans

5. Bitmap scans

6. Nested loop joins

7. Hash joins

8. Merge joins

9. Statistics

10. Query profiling

11. Optimization methods

Course materials in Russian are available for self-study at

postgrespro.ru/education/courses/QPT.

PGPRO. Postgres Pro Enterprise Features

Duration: 2 days

Background knowledge required:

Familiarity with Unix OS.

Good command of SQL.

Some knowledge of PL/pgSQL will be useful, but is not

mandatory.

https://postgrespro.ru/education/courses/QPT

161

x

Familiarity with PostgreSQL within the scope of the

courses DBA1, DBA2 and QPT (for DBAs) or DEV1, DEV2 and

QPT (for developers).

Knowledge and skills gained:

Proficiency with Postgres Pro Enterprise signature fea-

tures.

Topics:

1. Editions and features

2. Installation, configuration, upgrade

3. Transaction management

4. CFS – compressed file system

5. Query optimization

6. Adaptive optimization

7. Performance analysis

8. Load reporting – pgpro_pwr

9. User profiles

10. Audit

11. Task planner

12. Backup – 1

13. Backup – 2

14. Backup – 3

15. Synchronized cluster –multimaster

Course materials in Russian are available for self-study at:

postgrespro.ru/education/courses/PGPRO.

https://postgrespro.ru/education/courses/PGPRO

162

x

Professional Certification

The certification program, which was launched in 2019, is

useful for both database professionals and their employers.

Holding a certificate can give you an advantage when job

hunting or negotiating your salary. Besides, it’s a good oppor-

tunity to get an impartial evaluation of your knowledge.

For employers, the certification program facilitates recruiting,

enables verification of PostgreSQL expertise of the current

employees, and provides a means to control the quality of

knowledge received in external employee training or to check

the competence of third-party vendors and partners.

PostgreSQL certification is currently available only for data-

base administrators, but in the future we plan to launch

certification programs for PostgreSQL application developers

too.

We offer three levels of certification, all of which require you

to pass several tests.

Professional level confirms the knowledge in the following

fields:

• General understanding of PostgreSQL architecture.

• Server installation, working in psql, tuning configuration

settings.

• Logical and physical data structure.

• User and access management.

• General understanding of backup and replication con-

cepts.

To obtain a certificate, you must successfully pass a test on

the DBA1 course. For new applicants, the PostgreSQL 13 test

version is recommended.

163

x

Expert level additionally confirms the knowledge in the fol-

lowing fields:

• PostgreSQL internals.

• Server setup and monitoring, database maintenance

tasks.

• Performance optimization tasks, query tuning.

• Taking backups.

• Physical and logical replication setup for various usage

scenarios.

There are two certification pathways:

• Have the Professional level for PostgreSQL 13 and pass

DBA2-13, DBA3-13 and QPT-13 tests (in any order).

• Have the Expert level for PostgreSQL 10 and pass the tran-

sition test Expert 10–13.

Master level additionally confirms practical skills required for

PostgreSQL database administration.

To get a certificate, it is required to have a certificate of the

Expert level and successfully pass a hands-on test. This cer-

tification is currently under development.

Create an account under postgrespro.ru/user and sign up for

a certification test in your profile.

To pass a test, you should have:

• a good command of the corresponding courses and the

documentation sections they refer to

• hands-on experience in working with PostgreSQL via psql

While taking the test, you can refer to our course materials

and the PostgreSQL documentation, but usage of any other

sources of information is prohibited.

https://postgrespro.ru/user

164

x

Achieving a particular level is acknowledged by a certificate.

Certificates do not expire, but they are tied to a specific Post-

greSQL version and will become obsolete as that version is

deprecated. So in several years you may want to take a test

for a more recent PostgreSQL version.

To learn more about certification, visit postgrespro.ru/

education/cert.

Academic Collaboration

Our company is committed to cultivating the next generation

of database experts. This requires efforts at the earliest level

of education, and it is only possible through collaboration

with universities, colleges, and schools.

Academic License

For educational organizations, we provide a free academic

license for the Postgres Pro Standard DBMS. To apply, send a

request to academy@postgrespro.ru.

Student Internships

We set up student labs at universities to provide internship

opportunities. Our experts help the students select a gradu-

ation thesis related to PostgreSQL, develop and defend it.

Competitions

Our company participates in organizing hackathons and var-

ious competitions for school and university students, in-

cluding:

https://postgrespro.ru/education/cert
https://postgrespro.ru/education/cert
mailto:academy@postgrespro.ru

165

x

• the ”Postgres Pro DBMS” section at the IT-Planet Competi-

tion: challenge.braim.org/landing/postgres_contest,

• the Russian National Open-Source Project Competition:

foss.kruzhok.org.

Students who are winners or finalists of competitions hosted

by the company or with our involvement, as well as lecturers

from partner universities, can take professional certification

tests for free. To receive a code for the free certification test,

contact us at certification@postgrespro.ru and attach a sup-

porting document.

Academic Courses

We offer several academic courses produced in cooperation

with professors from leading universities. All the courses can

be used in educational institutions for free. Lecturers can use

textbooks, slides, lecture videos, and other educational ma-

terials published on our website: postgrespro.ru/education/

university.

Postgres Professional has contributed to several courses

taught in such universities as Lomonosov Moscow State Uni-

versity, Higher School of Economics, Moscow Aviation Insti-

tute, Reshetnev Siberian State University of Science and Tech-

nology, and Siberian Federal University. Contact us if you are

a university representative and would like to add database

courses to the curriculum.

We also seek partnership with teachers and instructors who

are ready to develop neworiginal PostgreSQL courses. On our

part, we provide all the required support and advice, edit the

manuscripts and drive them to publication, as well as make

arrangements for open lectures of the course authors in top

Russian universities.

https://challenge.braim.org/landing/postgres_contest
https://foss.kruzhok.org
mailto:certification@postgrespro.ru
https://postgrespro.ru/education/university
https://postgrespro.ru/education/university

166

x

SQL Basics

Course participants will learn about PostgreSQL and will be

able to start working with it right away; no prior training

is required. Starting with simple SQL queries, students will

gradually get to more complex constructs, learn about trans-

actions and query optimization.

This course is based on the following textbook (published in

Russian):

E. Morgunov, PostgreSQL. SQL Basics. St. Petersburg : BHV-

Petersburg, 2018.

ISBN 978-5-9775-4022-3

Contents:

• Introduction

• Configuring the envi-

ronment

• Basic operations

• Data types

• DDL fundamentals

• Queries

• Data manipulation

• Indexes

• Transactions

• Performance tuning

A soft copy of this book in Russian is available on our website:

postgrespro.ru/education/books/sqlprimer.

https://postgrespro.ru/education/books/sqlprimer

167

x

This course includes 36 hours of lectures and hands-on train-

ing. The author has been teaching it at top universities in

Moscow and Krasnoyarsk for several years. You can download

the course materials in Russian at postgrespro.ru/education/

university/sqlprimer.

Evgeny Morgunov, Ph.D in

Technical Sciences, associate

professor at the Informatics

and Computer Science Depart-

ment of Reshetnev Siberian

State University of Science

and Technology.

Evgeny lives in Krasnoyarsk.

Before joining the university

in 2000, he worked as a pro-

grammer for over 10 years, in-

cluding developing a banking

application system. He got to

learn PostgreSQL in 1998. Being an advocate of using free

open-source software in academic activities, he has initiated

the use of PostgreSQL and FreeBSD operating system as part

of the “Programming Technology”course. Evgeny is amember

of the International Society for Engineering Pedagogy (IGIP).

He has been using PostgreSQL in teaching for more than 20

years.

Database Technology Fundamentals

A modern academic course that combines in-depth the-

ory with relevant practical skills of database design and

deployment.

https://postgrespro.ru/education/university/sqlprimer
https://postgrespro.ru/education/university/sqlprimer

168

x

B. Novikov, E. Gorshkova, and N. Grafeeva, Database Technol-

ogy Fundamentals. 2nd ed. Moscow : DMK Press, 2020.

ISBN 978-5-97060-841-8

The first part contains the

key information about

database management

systems: relational data

model, the SQL language,

transaction processing.

The second part dives into

the underlying database

technology and its de-

velopment trends. Some

topics covered in the first

part are discussed again

at a deeper level.

Contents:

Part I. From Theory to Practice

• Introduction

• Some database theory

• Getting started with databases

• Introduction to SQL

• Database access management

• Transactions and data consistency

• Database application development

• Relational model extensions

• Various types of database systems

169

x

Part II. From Practice to Proficiency

• Database system architecture

• Storage structures and the main algorithms

• Query execution and optimization

• Transaction management

• Database reliability

• Advanced SQL features

• Database functions and procedures

• PostgreSQL extensibility

• Full-text search

• Data security

• Database administration

• Replication

• Parallel and distributed database systems

A soft copy of this book in Russian is available on our website:

postgrespro.ru/education/books/dbtech.

This course offers 24 hours of lectures and 8 hours of hands-

on training. It was delivered by Boris Novikov at the faculty of

Computational Mathematics and Cybernetics of Lomonosov

Moscow State University. You can download the course

materials in Russian at postgrespro.ru/education/university/

dbtech.

Boris Novikov, Dr. Sci. in Physics

and Mathematics, professor at

the Informatics Department of

Higher School of Economics in St.

Petersburg.

His academic interests mainly

concern various aspects of de-

signing, developing, and deploy-

https://postgrespro.ru/education/books/dbtech
https://postgrespro.ru/education/university/dbtech
https://postgrespro.ru/education/university/dbtech

170

x

ing database systems and applications, as well as scalable

distributed systems for Big Data processing and analytics.

Ekaterina Gorshkova, Ph.D. in Physics and Mathematics.

An expert in designing high-load data-intensive applications.

Her academic interests include machine learning, data-flow

analysis, and data retrieval.

Natalia Grafeeva, Ph.D. in Physics and Mathematics, associate

professor at the Informatics and Data Analysis Department

of St. Petersburg State University.

Her academic interests include databases, data retrieval, Big

Data, and smart data analysis. She is an expert in information

system design, development, and maintenance, as well as in

course design and teaching.

Books

PostgreSQL Internals

This book is for those who will not settle for a black-box ap-

proach when working with a database. Targeted at readers

who have some experience with PostgreSQL, this book will

also be useful for those who are familiar with another data-

base system but switch over to PostgreSQL and would like to

understand how they differ.

E. Rogov, PostgreSQL 14 Internals. Moscow : DMK Press, 2022

ISBN 978-5-6045970-4-0 (in English)

ISBN 978-5-93700-305-8 (in Russian)

171

x

You will not find any

ready-made recipes in this

book. But the provided

explanations of the inner

mechanics will enable you

to critically evaluate other

people’s experience and

come to your own conclu-

sions. The author goes

into details of PostgreSQL

internals and shows how

to run experiments and

verify information that in-

evitably gets deprecated.

Egor Rogov has been working in the

education department in Postgres

Professional since 2015; he develops

and teaches training courses, pub-

lishes blog posts, writes and edits

books.

Contents:

Introduction

Part I. Isolation and MVCC

Isolation • Pages and Tuples • Snapshots • Page

pruning and HOT updates • Vacuum and autovacuum •

Freezing • Rebuilding tables and indexes

Part II. Buffer cache and WAL

Buffer cache • Write-ahead log • WAL modes

172

x

Part III. Locks

Relation-level locks • Row-level locks • Miscellaneous

locks • Locks on memory structures

Part IV. Query execution

Query execution stages • Statistics • Table access

methods • Index access methods • Index scans •

Nested loop • Hashing • Sorting and Merging

Part V. Index types

Hash • B-tree • GiST • SP-GiST • GIN • BRIN

A soft copy of this book is available on our website:

postgrespro.com/community/books/internals.

PostgreSQLMonitoring

Monitoring is a critical aspect of PostgreSQL administration.

The book encompasses this topic, providing vast information

on available tools, tips on how to use them and ways of pro-

cessing the information you get from them.

This book provides insights into PostgreSQL operations and

monitoring techniques, helping readers optimize database

performance and effectively address administrative chal-

lenges.

A. Lesovsky, PostgreSQLMonitoring. Moscow : Bumba, 2024

ISBN 978-5-907754-42-3

https://postgrespro.com/community/books/internals

173

x

Contents:

• Introduction

• About this

book

• Statistics

overview

• Activity statis-

tics

• Query and

function exe-

cution

• Databases

• Shared mem-

ory and in-

put/output

• Write-ahead

Log

• Replication

• Vacuum

• Operation execution process

• Appendix: Testing environment

Alexey Lesovsky is an expert data-

base administrator, system adminis-

trator, developer and devops engi-

neer with almost 20 years of experi-

ence in managing large-scale com-

plex systems as well as in software

design and development.

The book comes together with a docker environment for

you to test the examples and run experiments in. It is an

174

x

interesting read for database administrators, system admin-

istrators, reliability experts and performance optimization

enthusiasts.

A soft copy of this book in Russian is available on our website:

postgrespro.ru/education/books/monitoring.

A Database Guide

The book outlines the architectural foundations of all mod-

ern database management systems and explains the algo-

rithms and data structures they utilize. Special attention is

paid to the implementation of the same principles in func-

tionally similar platforms.

A must-read for anyone

dissatisfied with their

“Software Engineering

in Three Months” course.

It supplements purely

practical skills by giving

understanding of underly-

ing patterns. This is a book

for software architects and

senior developers—the

elite and those aspiring to

join their ranks.

V. Komarov, A Database Guide. Moscow : DMK Press, 2024

ISBN 978-5-93700-287-7

https://postgrespro.ru/education/books/monitoring

175

x

A soft copy of this book in Russian is available on our website:

postgrespro.ru/education/books/dbguide.

Vladimir Komarov is an IT general-

ist: software developer, database

administrator, data and infrastruc-

ture architect, lecturer and a bit of

a evangelist.

Contents:

Part I. Database Classification

Data models • Extra classification criteria

Part II. Data Access

Storage structures • Data processing

Part III. DBMS Architecture

Data consistency guarantees • DBMS structure

Part IV. Distributed Databases

The distribution compromise

Modifying distributed data

Part V. Recovery

Replication • Backup

Part VI. Database Operation

Database management • Hardware • Financials

Part VII. Database Security

Access control • Internal threats

https://postgrespro.ru/education/books/dbguide

XI The Hacker’s

Guide to the Galaxy

News and Discussions

Anyone can follow PostgreSQL news, learn about the features

planned for the next release, and stayup-to-datewith current

events.

Plenty of interesting and useful content is published in var-

ious related blogs. For example, the planet.postgresql.org

website aggregates all the English-language articles in one

place. Many articles in Russian can be found at habr.com/

hub/postgresql, including those published by Postgres Pro-

fessional. For some of our articles, an English translation is

available at habr.com/en/company/postgrespro/blog/. There

are also dedicated YouTube channels, such as youtube.com/

RuPostgres and youtube.com/PostgresTV.

There is also a Wiki project (wiki.postgresql.org), where you

can find FAQs, training materials, articles about system setup

and optimization,migration specifics from different database

systems, and much more.

Almost 14000 Russian-speaking PostgreSQL users subscribe

to the “pgsql—PostgreSQL” channel on Telegram (t.me/pgsql),

establishing an active and helpful community.

https://planet.postgresql.org
https://habr.com/hub/postgresql
https://habr.com/hub/postgresql
https://habr.com/en/company/postgrespro/blog/
https://youtube.com/RuPostgres
https://youtube.com/RuPostgres
https://youtube.com/PostgresTV
https://wiki.postgresql.org
https://t.me/pgsql

178

xi

You can also ask your questions on stackoverflow.com. Do

not forget to add the “postgresql” tag.

As for Postgres Professional news, they are published in its

corporate blog at postgrespro.com/blog.

Mailing Lists

To get all the news firsthand, without waiting for someone to

write a blog post, you can subscribe to mailing lists. Follow-

ing the tradition, PostgreSQLdevelopers discuss all questions

exclusively via email.

You can find all the mailing lists at postgresql.org/list. Some

of them are:

• pgsql-hackers (typically called simply “hackers”), the main

list for everything related to development

• pgsql-general used to discuss general questions

• pgsql-bugs for bug reports

• pgsql-docs for documentation

• pgsql-translators for translation-related discussions

• pgsql-announce to get new release announcements

and many more.

Once you sign up, you will start receiving regular emails and

will be able to participate in discussions if you wish. Another

option is to browse through the email archive at postgresql.

org/list or on our company’s website (postgrespro.com/list).

https://stackoverflow.com
https://postgrespro.com/blog
https://postgresql.org/list
https://postgresql.org/list
https://postgresql.org/list
https://postgrespro.com/list

179

xi

Commitfest

Another way to keep up with the news without spending too

much time is to check the commitfest.postgresql.org page.

Here the community opens the so-called commitfests for de-

velopers to submit their patches. For example, commitfest

01.03.2024–31.03.2024 was open for version 17, while com-

mitfest 01.07.2024–31.07.2024was related to the next version

already. It allows the community to stop accepting new fea-

tures at least about six months before the release and have

the time to stabilize the code.

Patches undergo several stages: first, they are reviewed and

fixed, and then they are either accepted, moved to the next

commitfest, or rejected (if you are completely out of luck).

This way, you can stay informed about new features already

included in PostgreSQL or planned for the next release.

Conferences

Moscow, St. Petersburg, and other cities in Russia host the

annual international conference PGConf (pgconf.ru), attended

by hundreds of PostgreSQL users and developers.

Besides, several Russian cities host conferences on broader

topics, including databases in general and PostgreSQL in par-

ticular. We will name only a few:

HighLoad++ in Moscow and other cities (highload.ru);

CodeFest in Novosibirsk (codefest.ru);

DUMP in St. Petersburg (dump-spb.ru) and Ekaterinburg

(dump-ekb.ru);

https://commitfest.postgresql.org
https://pgconf.ru
https://highload.ru
https://codefest.ru
https://dump-spb.ru
https://dump-ekb.ru

180

xi

Stachka in Ulyanovsk (nastachku.ru);

Heisenbug in Moscow (heisenbug.ru);

Sysconf in Moscow (sysconf.pro).

Naturally, PostgreSQL conferences are held all over the world.

The major ones are:

PGCon in Ottawa, Canada (pgcon.org)

PGConf Europe (pgconf.eu)

The list of upcoming events can be found at postgresql.org/

about/events.

In addition to conferences, there are less official regular mee-

tups, including online ones.

https://nastachku.ru
https://heisenbug.ru
https://sysconf.pro
https://pgcon.org
https://pgconf.eu
https://postgresql.org/about/events
https://postgresql.org/about/events

XII Postgres

Professional

Postgres Professional companywas founded in 2015; it unites

key Russian developers whose contributions to PostgreSQL

are recognized in the global community. Fostering database

development expertise in Russia, the company currently em-

ploys about 400 developers, architects, engineers, and other

specialists.

Postgres Professional company delivers several versions of

Postgres Pro database system based on PostgreSQL, as well

as develops new core features and extensions and provides

support for application system design, maintenance, and mi-

gration to PostgreSQL.

The company pays much attention to education. It hosts

PgConf.Russia, the largest international annual PostgreSQL

conference in Moscow, and participates in other conferences

all over the world.

Contact information:

7A Dmitry Ulyanov str., Moscow, Russia, 117036

+7 495 150-06-91

info@postgrespro.ru

mailto:info@postgrespro.ru

182

xii

Postgres Pro Database System

Postgres Pro is a Russian commercial database system de-

veloped by the Postgres Professional company. Based on the

open-source PostgreSQLdatabase system, Postgres Pro offers

many additional features to satisfy the needs of enterprise

customers. It is included in the unified register of Russian

software.

Postgres Pro Standard includes all PostgreSQL features, along

with additional extensions and core patches, including those

that have not yet been accepted by the community. As a

result, its users can get access to useful functionality and

improve performance without having to wait for the next

PostgreSQL version to be released.

Postgres Pro Enterprise is a considerably reworked version of

the database system; offering better stability and increased

performance, it can address challenging production-level

tasks.

Both Postgres Pro versions have been extended with the re-

quired information security functionality and are certified by

FSTEC (Federal Service for Technical and Export Control).

To use any Postgres Pro version, you must purchase a license.

A trial version is available for free, and you can also obtain

Postgres Pro at no cost for educational purposes or applica-

tion development.

Educational institutions are eligible for a free academic Post-

gres Pro Standard license.

To learnmore about the features specific to different Postgres

Pro versions, go to postgrespro.com/products.

https://postgrespro.com/products

183

xii

Postgres Pro Enterprise Manager

Postgres Pro Enterprise Manager (PPEM) is an integrated con-

trol panel for Postgres Pro Enterprise.

PPEM is an all-in-one console with a streamlined monitoring

and control interface. It lets you perform general admin-

istration tasks in the browser and aggregates access to all

your databases and instances. PPEM increases the database

administration team’s efficiency and speeds up daily admin-

istrative tasks.

For details, see: postgrespro.ru/products/PPEM.

Postgres Pro Backup Enterprise

Postgres Pro Backup Enterprise (pg_probackup) is a cluster

backup and recovery tool for PostgreSQL.

It utilizes a centralized backup catalog, stored locally or re-

motely (including an S3 storage).

Pro Backup supports page-level incremental backup, backup

storage policies, integrity verification, point-in-time recovery,

parallel backup and recovery, data compression, and CFS file

systems.

For details, see: postgrespro.ru/products/pg_probackup.

Shardman

Shardman is a PostgreSQL-based distributed relational DBMS

with all the extended features of Postgres Pro.

https://postgrespro.ru/products/PPEM
https://postgrespro.ru/products/pg_probackup

184

xii

Shardman is PostgreSQL-compatible, provides strong guar-

antees of data isolation and consistency, enables horizontal

scaling, and boasts built-in redundancy mechanisms.

For details, see: postgrespro.ru/products/shardman.

Careers

We are always looking for people who want to help grow

the Postgres ecosystem and the open source community at

large.

The Postgres Professional team comprises the majority of

Russian PostgreSQL contributors. We develop kernel-level

code for PostgreSQL and its extensions, create ecosystem

products for databasemonitoring and administration. Our ex-

perts develop DBaaS solutions, carry out technical audits and

migrations, offer technical support, participate in research,

and drive innovation.

We are looking for system software engineers, backend and

frontend developers, DevOps, QA engineers, database admin-

istrators, and other specialists. For details, check out our

career portal: career.postgrespro.ru.

Services

Fault-Tolerant Solutions for Postgres

Designing and implementing high-load, high-performance,

and fault-tolerant production systems; providing consulting

services. Deploying Postgres and optimizing system configu-

ration.

https://postgrespro.ru/products/shardman
https://career.postgrespro.ru

185

xii

Vendor Technical Support

24x7 support for Postgres Pro and PostgreSQL: system moni-

toring, disaster recovery, incident analysis, performance man-

agement, debugging both core features and extensions.

Migration of Application Systems

Estimating the complexity of migration to Postgres from

other database systems. Defining the architecture and the re-

quired changes for new solutions. Migrating application sys-

tems to Postgres and providing support during migration.

Postgres Training

Courses for database administrators, system architects, and

application developers covering Postgres specifics and effi-

cient use of its advantages.

Database System Audit

Database system evaluation by Postgres Professional experts.

Information security audit for Postgres-based systems.

A complete list of services is available at postgrespro.com/

services.

https://postgrespro.com/services
https://postgrespro.com/services

Pavel Luzanov

Egor Rogov

Igor Levshin

Postgres. The First Experience

Translated by Liudmila Mantrova

and Alexander Meleshko

Cover design by Eteri Bezhashvili

11th edition, revised and updated

postgrespro.com/community/books/introbook

© Postgres Professional, 2016–2025

ISBN 978-5-6045970-8-8

https://postgrespro.com/community/books/introbook

	About PostgreSQL
	Some History
	Development
	Support
	Current State
	Reliability and Stability
	Security
	Conformance to the SQL Standard
	Transaction Support
	For Application Developers
	Scalability and Performance
	Query Planner
	Indexing
	Cross-Platform Support
	Extensibility
	Availability
	Independence

	What's New in PostgreSQL 17
	SQL Commands
	Functions and types
	SQL/JSON
	Logical replication
	Vacuum
	Backup and upgrade
	Access control
	Query planning and execution
	Monitoring
	Event triggers
	Configuration parameters
	Localization
	Miscellaneous

	Installation and Quick Start
	Windows
	Installation
	Managing the Service and the Main Files

	Debian and Ubuntu
	Installation
	Managing the Service and the Main Files

	Trying SQL
	Connecting via psql
	Databases
	Tables
	Filling Tables with Data
	Data Retrieval
	Simple Queries

	Joins
	Subqueries
	Sorting
	Grouping
	Changing and Deleting Data
	Transactions
	Useful psql Commands
	Conclusion

	Demo Database
	About the Demo Database
	Overview
	Bookings
	Tickets
	Flight Segments
	Flights
	Airports
	Boarding Passes
	Aircraft
	Seats
	Flights View
	Routes View
	The ``now'' Function

	Installation
	Installation from the Website

	Sample Queries
	A Couple of Words about the Schema
	Simple Queries
	Aggregate Functions
	Window Functions
	Arrays
	Recursive Queries
	Functions and Extensions

	PostgreSQL for Applications
	A Separate User
	Remote Connections
	Pinging the Server
	PHP
	Perl
	Python
	Java

	Backup
	What's next?

	Configuring PostgreSQL
	Basic Settings
	Changing Configuration Parameters
	The Most Important Parameters
	Connection Settings
	Bad Advice

	PostgreSQL and 1C Solutions
	Choosing PostgreSQL Version
	Configuration Parameters
	Connection Settings

	pgAdmin
	Installation
	Connecting to a Server
	Browser
	Running Queries
	Other Features

	Additional Features
	Full-Text Search
	Using JSON and JSONB
	Integration with External Systems
	Installing Extensions
	Oracle
	MySQL
	SQL Server
	PostgreSQL

	Education and Certification
	Documentation
	Training Courses
	Where and How to Take a Training
	DBA1. Basic PostgreSQL administration
	DBA2. Configuring and monitoring PostgreSQL
	DBA3. Replication and backups
	DEV1. Basic server-side application development
	DEV2. Advanced server-side application development
	QPT. Query Performance Tuning
	PGPRO. Postgres Pro Enterprise Features

	Professional Certification
	Academic Collaboration
	Academic License
	Student Internships
	Competitions
	Academic Courses
	SQL Basics
	Database Technology Fundamentals

	Books
	PostgreSQL Internals
	PostgreSQL Monitoring
	A Database Guide

	The Hacker's Guide to the Galaxy
	News and Discussions
	Mailing Lists
	Commitfest
	Conferences

	Postgres Professional
	Postgres Pro Database System
	Postgres Pro Enterprise Manager
	Postgres Pro Backup Enterprise
	Shardman
	Careers
	Services

